疋田 辰之

Last Update: 2021/06/30 00:56:02

Print

Name(Kanji/Kana/Abecedarium Latinum)
疋田 辰之/ヒキタ タツユキ/Hikita, Tatsuyuki
Primary Affiliation(Org1/Job title)
Research Institute for Mathematical Sciences (RIMS)/Assistant Professor
Affiliated programs (koza)
Org1 Job title
Graduate School of Science Assistant Professor
ORCID ID
https://orcid.org/0000-0002-0912-6449
researchmap URL
https://researchmap.jp/7000015505
Research Topics
(Japanese)
幾何学的表現論
(English)
Geometric representation theory
Overview of the research
(Japanese)
シンプレクティック特異点解消の同変K群や同変楕円コホモロジーに対する標準基底の概念を定式化し、その代数幾何、表現論、超幾何関数論などへの応用を試みる。
(English)
We propose a concept of canonical bases in equivariant K-theory or equivariant elliptic cohomology for conical symplectic resolutions and try to apply them to algebraic geometry, representation theory, or hypergeometric functions.
Fields of research (key words)
Key words(Japanese) Key words(English)
幾何学的表現論 geometric representation theory
代数幾何 algebraic geometry
Published Papers
Author Author(Japanese) Author(English) Title Title(Japanese) Title(English) Bibliography Bibliography(Japanese) Bibliography(English) Publication date Refereed paper Language Publishing type Disclose
疋田 辰之 疋田 辰之 Elliptic canonical bases for hypertoric varieties Elliptic canonical bases for hypertoric varieties Algebraic Lie Theory and Representation Theory 報告集 Algebraic Lie Theory and Representation Theory 報告集 2019 Japanese Research paper(research society, symposium, etc.) Disclose to all
疋田 辰之 疋田 辰之 Canonical bases in equivariant K-theory of conical symplectic resolutions Canonical bases in equivariant K-theory of conical symplectic resolutions Algebraic Lie Theory and Representation Theory 報告集, 1-19 Algebraic Lie Theory and Representation Theory 報告集, 1-19 , 1-19 2017/10 Japanese Research paper(research society, symposium, etc.) Disclose to all
Tatsuyuki Hikita Tatsuyuki Hikita Tatsuyuki Hikita An Algebro-Geometric Realization of the Cohomology Ring of Hilbert Scheme of Points in the Affine Plane An Algebro-Geometric Realization of the Cohomology Ring of Hilbert Scheme of Points in the Affine Plane An Algebro-Geometric Realization of the Cohomology Ring of Hilbert Scheme of Points in the Affine Plane INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 8, 2538-2561 INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 8, 2538-2561 INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 8, 2538-2561 2017/04 Refereed English Research paper(scientific journal) Disclose to all
Tatsuyuki Hikita Tatsuyuki Hikita Tatsuyuki Hikita Affine Springer fibers of type A and combinatorics of diagonal coinvariants Affine Springer fibers of type A and combinatorics of diagonal coinvariants Affine Springer fibers of type A and combinatorics of diagonal coinvariants ADVANCES IN MATHEMATICS, 263, 88-122 ADVANCES IN MATHEMATICS, 263, 88-122 ADVANCES IN MATHEMATICS, 263, 88-122 2014/10 Refereed English Research paper(scientific journal) Disclose to all
Title language:
Conference Activities & Talks
Title Title(Japanese) Title(English) Conference Conference(Japanese) Conference(English) Promotor Promotor(Japanese) Promotor(English) Date Language Assortment Disclose
Non-toric examples of elliptic canonical bases Non-toric examples of elliptic canonical bases Non-toric examples of elliptic canonical bases Algebraic Lie Theory and Representation Theory 代数的Lie理論および表現論 Algebraic Lie Theory and Representation Theory 2021/06/26 Japanese Oral presentation(general) Disclose to all
Elliptic canonical bases for toric hyper-Kahler manifolds[Invited] Elliptic canonical bases for toric hyper-Kahler manifolds [Invited] Elliptic canonical bases for toric hyper-Kahler manifolds [Invited] 東大京大代数幾何セミナー 東大京大代数幾何セミナー 2020/06/17 Japanese Oral presentation(general) Disclose to all
Highest weight categories arising from equivariant coherent sheaves on toric hyper-Kahler manifolds[Invited] Highest weight categories arising from equivariant coherent sheaves on toric hyper-Kahler manifolds [Invited] Highest weight categories arising from equivariant coherent sheaves on toric hyper-Kahler manifolds [Invited] 阪大オンライン代数幾何学セミナー 阪大オンライン代数幾何学セミナー 2020/06/08 Japanese Oral presentation(general) Disclose to all
Elliptic canonical bases for toric hyper-Kahler manifolds[Invited] Elliptic canonical bases for toric hyper-Kahler manifolds [Invited] Elliptic canonical bases for toric hyper-Kahler manifolds [Invited] Geometric Representation Theory and Quantum Field Theories Geometric Representation Theory and Quantum Field Theories Geometric Representation Theory and Quantum Field Theories 2019/12 English Oral presentation(general) Disclose to all
Elliptic and K-theoretic canonical bases for hypertoric varieties[Invited] Elliptic and K-theoretic canonical bases for hypertoric varieties [Invited] Elliptic and K-theoretic canonical bases for hypertoric varieties [Invited] Representation Theory of Algebraic Groups and Quantum Groups Representation Theory of Algebraic Groups and Quantum Groups Representation Theory of Algebraic Groups and Quantum Groups 2019/10/24 English Oral presentation(general) Disclose to all
Elliptic canonical bases for hypertoric varieties Elliptic canonical bases for hypertoric varieties Elliptic canonical bases for hypertoric varieties Algebraic Lie Theory and Representation Theory Algebraic Lie Theory and Representation Theory 2019/05/24 Japanese Oral presentation(general) Disclose to all
シンプレクティック双対性入門 シンプレクティック双対性入門 数学入門公開講座 数学入門公開講座 2018/07/30 Japanese Public discourse, seminar, tutorial, course, lecture and others Disclose to all
Canonical bases in equivariant K-theory of conical symplectic resolutions[Invited] Canonical bases in equivariant K-theory of conical symplectic resolutions [Invited] Canonical bases in equivariant K-theory of conical symplectic resolutions [Invited] Algebraic Lie Theory and Representation Theory Algebraic Lie Theory and Representation Theory Algebraic Lie Theory and Representation Theory 2017/06/10 Japanese Oral presentation(invited, special) Disclose to all
Title language:
Awards
Title(Japanese) Title(English) Organization name(Japanese) Organization name(English) Date
日本数学会賞建部賢弘賞奨励賞 日本数学会 2014/09/26
井上研究奨励賞 井上科学振興財団 2017/02/03
External funds: competitive funds and Grants-in-Aid for Scientific Research (Kakenhi)
Type Position Title(Japanese) Title(English) Period
若手研究(B) Representative 同変K群の標準基底とその応用 (平成29年度分) 2017/04/01-2018/03/31
若手研究(B) Representative 同変K群の標準基底とその応用 (平成30年度分) 2018/04/01-2019/03/31
若手研究(B) Representative 同変K群の標準基底とその応用 (2019年度分) 2019/04/01-2020/03/31
若手研究(B) Representative 同変K群の標準基底とその応用 (2020年度分) 2020/04/01-2021/03/31
Teaching subject(s)
Name(Japanese) Name(English) Term Department Period
現代の数学と数理解析-基礎概念とその諸科学への広がり Invitation to Modern Mathematics and Mathematical Sciences - Basic concepts and their role in various sciences 前期 全学共通科目 2020/04-2021/03
現代の数学と数理解析-基礎概念とその諸科学への広がり Invitation to Modern Mathematics and Mathematical Sciences - Basic concepts and their role in various sciences 前期 全学共通科目 2021/04-2022/03