中安 淳

Last Update: 2021/06/01 16:10:04

Print

Name(Kanji/Kana/Abecedarium Latinum)
中安 淳/ナカヤス アツシ/Nakayasu, Atsushi
Primary Affiliation(Org1/Job title)
Center for the Promotion of Interdisciplinary Education and Research (C-PiER)/Program-Specific Assistant Professor
Academic Degree
Field(Japanese) Field(English) University(Japanese) University(English) Method
修士(数理科学) 東京大学
博士(数理科学) 東京大学
ORCID ID
https://orcid.org/0000-0002-2008-7321
researchmap URL
https://researchmap.jp/ankys
Research Topics
(Japanese)
ハミルトン・ヤコビ方程式や全変動流、曲率流などに対する粘性解。
(English)
Viscosity solutions for Hamilton-Jacobi equation, total variation flow and curvature flow.
Overview of the research
(Japanese)
ハミルトン・ヤコビ方程式や全変動流、曲率流などの非線形性の強い偏微分方程式について粘性解理論を使って研究している。
(English)
I study partial differential equations with strong nonlinearity such as Hamilton-Jacobi equation, total variation flow and curvature flow using viscosity solutions.
Fields of research (key words)
Key words(Japanese) Key words(English)
数理解析学 Mathematical analysis
函数方程式論 Functional equation
非線形解析 Nonlinear analysis
実解析 Real analysis
Published Papers
Author Author(Japanese) Author(English) Title Title(Japanese) Title(English) Bibliography Bibliography(Japanese) Bibliography(English) Publication date Refereed paper Language Publishing type Disclose
Atsushi Nakayasu Atsushi Nakayasu Atsushi Nakayasu Two approaches to minimax formula of the additive eigenvalue for quasiconvex Hamiltonians Two approaches to minimax formula of the additive eigenvalue for quasiconvex Hamiltonians Two approaches to minimax formula of the additive eigenvalue for quasiconvex Hamiltonians Proc. Amer. Math. Soc., 147, 2, 701-710 Proc. Amer. Math. Soc., 147, 2, 701-710 Proc. Amer. Math. Soc., 147, 2, 701-710 2019/02 Refereed English Research paper(scientific journal) Disclose to all
Qing Liu, Atsushi Nakayasu Qing Liu, Atsushi Nakayasu Qing Liu, Atsushi Nakayasu Convexity preserving properties for Hamilton-Jacobi equations in geodesic spaces Convexity preserving properties for Hamilton-Jacobi equations in geodesic spaces Convexity preserving properties for Hamilton-Jacobi equations in geodesic spaces Discrete & Continuous Dynamical Systems - A, 39, 1, 157-183 Discrete & Continuous Dynamical Systems - A, 39, 1, 157-183 Discrete & Continuous Dynamical Systems - A, 39, 1, 157-183 2019 Refereed English Research paper(scientific journal) Disclose to all
Atsushi Nakayasu, Tokinaga Namba Atsushi Nakayasu, Tokinaga Namba Atsushi Nakayasu, Tokinaga Namba Stability properties and large time behavior of viscosity solutions of Hamilton-Jacobi equations on metric spaces Stability properties and large time behavior of viscosity solutions of Hamilton-Jacobi equations on metric spaces Stability properties and large time behavior of viscosity solutions of Hamilton-Jacobi equations on metric spaces Nonlinearity, 31, 11, 5147-5161 Nonlinearity, 31, 11, 5147-5161 Nonlinearity, 31, 11, 5147-5161 2018/10 Refereed English Research paper(scientific journal) Disclose to all
Atsushi Nakayasu, Piotr Rybka Atsushi Nakayasu, Piotr Rybka Atsushi Nakayasu, Piotr Rybka Integrability of the derivative of solutions to a singular one-dimensional parabolic problem Integrability of the derivative of solutions to a singular one-dimensional parabolic problem Integrability of the derivative of solutions to a singular one-dimensional parabolic problem Topol. Methods Nonlinear Anal., 52, 1, 239-257 Topol. Methods Nonlinear Anal., 52, 1, 239-257 Topol. Methods Nonlinear Anal., 52, 1, 239-257 2018/09 Refereed English Research paper(scientific journal) Disclose to all
蕭冬遠, 張龍傑, 中安淳, 若林泰央 蕭冬遠, 張龍傑, 中安淳, 若林泰央 協同組合の数理解析 協同組合の数理解析 数理科学実践研究レター 数理科学実践研究レター 2018/07 Refereed Research paper(scientific journal) Disclose to all
Atsushi Nakayasu, Piotr Rybka Atsushi Nakayasu, Piotr Rybka Atsushi Nakayasu, Piotr Rybka Energy solutions to one-dimensional singular parabolic problems with BV data are viscosity solutions Energy solutions to one-dimensional singular parabolic problems with BV data are viscosity solutions Energy solutions to one-dimensional singular parabolic problems with BV data are viscosity solutions Springer Proceedings in Mathematics and Statistics, 215, 195-213 Springer Proceedings in Mathematics and Statistics, 215, 195-213 Springer Proceedings in Mathematics and Statistics, 215, 195-213 2017 Refereed English Research paper(international conference proceedings) Disclose to all
Nao Hamamuki, Atsushi Nakayasu, Tokinaga Namba Nao Hamamuki, Atsushi Nakayasu, Tokinaga Namba Nao Hamamuki, Atsushi Nakayasu, Tokinaga Namba On cell problems for Hamilton-Jacobi equations with non-coercive Hamiltonians and their application to homogenization problems On cell problems for Hamilton-Jacobi equations with non-coercive Hamiltonians and their application to homogenization problems On cell problems for Hamilton-Jacobi equations with non-coercive Hamiltonians and their application to homogenization problems JOURNAL OF DIFFERENTIAL EQUATIONS, 259, 11, 6672-6693 JOURNAL OF DIFFERENTIAL EQUATIONS, 259, 11, 6672-6693 JOURNAL OF DIFFERENTIAL EQUATIONS, 259, 11, 6672-6693 2015/12 Refereed English Research paper(scientific journal) Disclose to all
Yoshikazu Giga, Nao Hamamuki, Atsushi Nakayasu Yoshikazu Giga, Nao Hamamuki, Atsushi Nakayasu Yoshikazu Giga, Nao Hamamuki, Atsushi Nakayasu EIKONAL EQUATIONS IN METRIC SPACES EIKONAL EQUATIONS IN METRIC SPACES EIKONAL EQUATIONS IN METRIC SPACES TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 367, 1, 49-66 TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 367, 1, 49-66 TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 367, 1, 49-66 2015/01 Refereed English Research paper(scientific journal) Disclose to all
Atsushi Nakayasu Atsushi Nakayasu Atsushi Nakayasu Metric viscosity solutions for Hamilton-Jacobi equations of evolution type Metric viscosity solutions for Hamilton-Jacobi equations of evolution type Metric viscosity solutions for Hamilton-Jacobi equations of evolution type Adv. Math. Sci. Appl., 24, 2, 333-351 Adv. Math. Sci. Appl., 24, 2, 333-351 Adv. Math. Sci. Appl., 24, 2, 333-351 2014 Refereed English Research paper(scientific journal) Disclose to all
Mi-Ho Giga, Yoshikazu Giga, Atsushi Nakayasu Mi-Ho Giga, Yoshikazu Giga, Atsushi Nakayasu Mi-Ho Giga, Yoshikazu Giga, Atsushi Nakayasu On general existence results for one-dimensional singular diffusion equations with spatially inhomogeneous driving force On general existence results for one-dimensional singular diffusion equations with spatially inhomogeneous driving force On general existence results for one-dimensional singular diffusion equations with spatially inhomogeneous driving force GEOMETRIC PARTIAL DIFFERENTIAL EQUATIONS: PROCEEDINGS, 15, 145-170 GEOMETRIC PARTIAL DIFFERENTIAL EQUATIONS: PROCEEDINGS, 15, 145-170 GEOMETRIC PARTIAL DIFFERENTIAL EQUATIONS: PROCEEDINGS, 15, 145-170 2013 Refereed English Research paper(international conference proceedings) Disclose to all
Title language:
External funds: competitive funds and Grants-in-Aid for Scientific Research (Kakenhi)
Type Position Title(Japanese) Title(English) Period
若手研究 Representative 距離空間上の粘性解の基礎と応用 (2019年度分) 2019/04/01-2020/03/31
若手研究 Representative 距離空間上の粘性解の基礎と応用 (2020年度分) 2020/04/01-2021/03/31
Teaching subject(s)
Name(Japanese) Name(English) Term Department Period
微分積分学(講義・演義)B Calculus with Exercises B 後期 全学共通科目 2021/04-2022/03
線形代数学(講義・演義)A Linear Algebra with Exercises A 前期 全学共通科目 2021/04-2022/03