CAMPBELL Douglas Simon

Last Update: 2021/06/02 11:51:09

Print

Name(Kanji/Kana/Abecedarium Latinum)
CAMPBELL Douglas Simon/キャンベル ダグラスサイモン/Campbell, Douglassimon
Primary Affiliation(Org1/Job title)
Graduate School of Pharmaceutical Sciences/Program-Specific Associate Professor
Faculty
Org1 Job title
Institute for Liberal Arts and Sciences (ILAS)
Academic Degree
Field(Japanese) Field(English) University(Japanese) University(English) Method
Ph.D. University of Cambridge
M.A University of Oxford
Personal Profile
(English)
Research Interests: Neuroscience, Cell Biology, Developmental Biology, Neuronal Remodelling, Axonal Arborisation, Synapse Formation, Local Roles for the Apoptotic Pathway in Neurones, Membrane and Organelle Trafficking.
Language of Instruction
Language(japanese) Language(english) Code
英語 English eng
ORCID ID
https://orcid.org/0000-0002-7371-9484
researchmap URL
https://researchmap.jp/douglascampbell
Research Topics
(Japanese)
研究テーマ: 神経科学、細胞生物学、発生生物学、神経細胞のリモデリング、軸索形成、シナプス形成、軸索変性、神経細胞におけるアポトーシス経路の局所的役割、膜とオルガネラの輸送
(English)
Research Interests: Neuroscience, Cell Biology, Developmental Biology, Neuronal Remodelling, Axonal Arborisation, Synapse Formation, Axon Degeneration, Local Roles for the Apoptotic Pathway in Neurones, Membrane and Organelle Trafficking.
Overview of the research
(Japanese)
シナプス結合の形成と維持は、神経系の正常な機能に不可欠である。その重要性にもかかわらず、神経細胞がどのようにして軸索や樹状突起の枝分かれや分岐、シナプスを介した細胞間の相互作用、シナプス形成を介した複雑な形態を作り出すのかについての知識は、特に中枢神経系での理解は非常に限られたものにとどまっています。これらのプロセスは非常にダイナミックであり、より安定した枝やシナプスが形成される前に枝やシナプスが獲得されたり失われたりします。私たちは、軸索のような細胞体から離れた場所での局所的なシグナル伝達機構を開拓し、特に興味を持っています。現在、私たちの研究の焦点は、細胞の細胞骨格の変化と膜トラフィッキングが、軸索の枝やシナプスの成長を制御するためにどのように調整されているかを理解することにあります。アポトーシス経路は、in vitroでは成長円錐体の化学刺激応答を媒介し、in vivoでは樹状突起の形成とシナプス形成を抑制する上で重要であることがわかっています。現在の研究では、膜輸送の異なるメカニズムを含め、神経細胞の活性に依存しない発生過程が生理的刺激に反応して細胞や分子のメカニズムを共有しているかどうかを理解するために、研究を広げています。これらのプロセスとそのメカニズムを研究するために、私たちはゼブラフィッシュ幼生の光学的明瞭度、遺伝学、細胞内イメージング、確立された視覚刺激パラダイムを活用して、視覚系における神経細胞のリモデリングと機能を研究しています。発達期の神経細胞のリモデリングの基礎となるメカニズムは類似していたり、軸索変性の間に異常なシグナル伝達を受けたりすることがあるため、我々の研究は、正常な生理学の下で細胞の形態形成とダイナミクスを支配する基本的な原理を明らかにするだけでなく、我々の理解に貢献し、変性疾患に対する新たな治療法を発見する可能性があると考えられる。
(English)
The formation and maintenance of appropriate synaptic connections are essential to the normal functioning in the nervous system. Despite their importance our knowledge of how neurones generate complex morphologies via the arborisation/ branching of axons and dendrites and cell-cell interactions via synapses, synaptogenesis, our understanding of which particularly in the central nervous system remains very limited. These processes are highly dynamic, with branches and synapses gained and lost prior to the formation of more stable branches and synapses. We have pioneered and are particularly interested in local signaling mechanisms at a distance away from the cell body, such as in axons. A current focus of our research is attempting to understand how changes in the cellular cytoskeleton and membrane trafficking are coordinated to regulate axonal branch and synaptic growth. One potential mechanism is via the apoptotic pathway, which we have shown to be critical in mediating the chemotropic responses of growth cones in vitro and in restricting arborisation and synaptogenesis in vivo. Our current research is broadening out to include different mechanisms of membrane trafficking and to understand whether neuronal activity-independent processes during development share similar cellular and molecular mechanisms in response to physiological stimuli. To study these processes and their mechanisms, we are taking advantage of the optical clarity, genetics, subcellular in vivo imaging and established visual stimulation paradigms in zebrafish larvae to study neuronal remodelling and function in the visual system. Since the mechanisms underlying developmental neuronal remodelling may be similar or undergo abnormal signalling during axonal degeneration, our studies may not only reveal the fundamental principles governing cell morphogenesis and dynamics under normal physiology but also may additionally contribute to our understanding and potentially uncover novel therapeutic avenues to degenerative conditions.
Fields of research (key words)
Key words(Japanese) Key words(English)
神経細胞、軸索、シナプス、リモデリング、カスパーゼ、トラフィッキング Neuron, Axon, Synapse, Remodelling, Caspase, Trafficking
Published Papers
Author Author(Japanese) Author(English) Title Title(Japanese) Title(English) Bibliography Bibliography(Japanese) Bibliography(English) Publication date Refereed paper Language Publishing type Disclose
Douglas Campbell Douglas Campbell Douglas Campbell The RNA Binding Protein Igf2bp1 Is Required for Zebrafish RGC Axon Outgrowth In Vivo. The RNA Binding Protein Igf2bp1 Is Required for Zebrafish RGC Axon Outgrowth In Vivo. The RNA Binding Protein Igf2bp1 Is Required for Zebrafish RGC Axon Outgrowth In Vivo. PloS one PloS one PloS one 2015/09/01 Refereed Research paper(scientific journal) Disclose to all
Douglas S. Campbell, Hitoshi Okamoto Douglas S. Campbell, Hitoshi Okamoto Douglas S. Campbell, Hitoshi Okamoto Local caspase activation interacts with Slit-Robo signaling to restrict axonal arborization Local caspase activation interacts with Slit-Robo signaling to restrict axonal arborization Local caspase activation interacts with Slit-Robo signaling to restrict axonal arborization Journal of Cell Biology, 203, 4, 657-672 Journal of Cell Biology, 203, 4, 657-672 Journal of Cell Biology, 203, 4, 657-672 2013/11/25 Refereed English Research paper(scientific journal) Disclose to all
Douglas Campbell Douglas Campbell Douglas Campbell E3 ligase Nedd4 promotes axon branching by downregulating PTEN. E3 ligase Nedd4 promotes axon branching by downregulating PTEN. E3 ligase Nedd4 promotes axon branching by downregulating PTEN. Neuron Neuron Neuron 2010/02/01 Refereed Research paper(scientific journal) Disclose to all
Douglas Campbell Douglas Campbell Douglas Campbell Slit1a inhibits retinal ganglion cell arborization and synaptogenesis via Robo2-dependent and -independent pathways. Slit1a inhibits retinal ganglion cell arborization and synaptogenesis via Robo2-dependent and -independent pathways. Slit1a inhibits retinal ganglion cell arborization and synaptogenesis via Robo2-dependent and -independent pathways. Neuron Neuron Neuron 2007/07/01 Refereed Research paper(scientific journal) Disclose to all
Douglas Campbell Douglas Campbell Douglas Campbell A three-dimensional atlas of pituitary gland development in the zebrafish. A three-dimensional atlas of pituitary gland development in the zebrafish. A three-dimensional atlas of pituitary gland development in the zebrafish. The Journal of comparative neurology The Journal of comparative neurology The Journal of comparative neurology 2005/07/01 Refereed Research paper(scientific journal) Disclose to all
Douglas Campbell Douglas Campbell Douglas Campbell Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. The Journal of neuroscience : the official journal of the Society for Neuroscience The Journal of neuroscience : the official journal of the Society for Neuroscience The Journal of neuroscience : the official journal of the Society for Neuroscience 2005/01/01 Refereed Research paper(scientific journal) Disclose to all
Douglas Campbell Douglas Campbell Douglas Campbell Analyzing axon guidance in the zebrafish retinotectal system. Analyzing axon guidance in the zebrafish retinotectal system. Analyzing axon guidance in the zebrafish retinotectal system. Methods in cell biology Methods in cell biology Methods in cell biology 2004/01/01 Refereed Research paper(scientific journal) Disclose to all
Douglas Campbell Douglas Campbell Douglas Campbell Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron Neuron Neuron 2003/03/01 Refereed Research paper(scientific journal) Disclose to all
Douglas Campbell Douglas Campbell Douglas Campbell Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron Neuron Neuron 2001/12/01 Refereed Research paper(scientific journal) Disclose to all
Douglas Campbell Douglas Campbell Douglas Campbell Semaphorin 3A elicits stage-dependent collapse, turning, and branching in Xenopus retinal growth cones. Semaphorin 3A elicits stage-dependent collapse, turning, and branching in Xenopus retinal growth cones. Semaphorin 3A elicits stage-dependent collapse, turning, and branching in Xenopus retinal growth cones. The Journal of neuroscience : the official journal of the Society for Neuroscience The Journal of neuroscience : the official journal of the Society for Neuroscience The Journal of neuroscience : the official journal of the Society for Neuroscience 2001/11/01 Refereed Research paper(scientific journal) Disclose to all
Title language:
External funds: competitive funds and Grants-in-Aid for Scientific Research (Kakenhi)
Type Position Title(Japanese) Title(English) Period
Japan Society for the Promotion of Science Kakenhi Assignment ゼブラフィッシュ神経系におけるシナプス形成の分子細胞生物学的解析 The Cellular and Molecular Mechanisms Underlying Synapse formation in the Zebrafish Nervous System 2018/08/24-2008/12/31
German Research Foundation (DFG) Research Grant Representative Regulation of axonal arbor and synaptic dynamics by the apoptotic pathway: Interactions with the cytoskeleton, downstream substrates and upstream regulators 2016/06/01-2019/05/31
Japanese Society for the Promotion of Science Kakenhi for Research Startup Representative Regulation of axonal arbor and synaptic dynamics via interactions between the extrinsic apoptotic pathway and membrane trafficking 2018/10/01-2021/03/31
Japan Society for the Promotion of Science Kakenhi Kiban C Representative oles of mitochondria and inhibitor of apoptosis proteins in the spatial and temporal regulation of caspase activation during axonal arborisation and degeneration 2020/04/01-2023/03/31
基盤研究(C) Representative Roles of mitochondria and inhibitor of apoptosis proteins in the spatial and temporal regulation of caspase activation during axonal arborisation and degeneration (2020年度分) 2020/04/01-2021/03/31
研究活動スタート支援 Representative Regulation of axonal arbor and synaptic dynamics via interactions between the extrinsic apoptotic pathway and membrane trafficking (2020年度分) 2020/04/01-2021/03/31
Teaching subject(s)
Name(Japanese) Name(English) Term Department Period
科学コミュニケーションの基礎と実践(薬・英)A-E3 Theory and Practice in Scientific Writing and Discussion (Pharmaceutical Sciences, English)A-E3 前期 全学共通科目 2020/04-2021/03
Basic Biology and Metabolism-E2 Basic Biology and Metabolism-E2 後期 全学共通科目 2021/04-2022/03
Introduction to Biosciences-E2 Introduction to Biosciences-E2 後期 全学共通科目 2021/04-2022/03
Introduction to Molecular Cell Biology-E2 Introduction to Molecular Cell Biology-E2 前期 全学共通科目 2021/04-2022/03
特別実習(神経再編成機構)【H30以降入学者用】 Research Training(Department of Neuronal Remodeling) 通年 薬学部 2021/04-2022/03
特別実習(神経再編成機構) Research Training(Department of Neuronal Remodeling) 通年 薬学部 2021/04-2022/03
科学コミュニケーションの基礎と実践(薬・英)A-E3 Theory and Practice in Scientific Writing and Discussion (Pharmaceutical Sciences, English)A-E3 前期 全学共通科目 2021/04-2022/03
Faculty management (title, position)
Title Period
建物・設備・機器管理運営委員会 委員 2020/04/01-2022/03/31
Academic organizations (editor, editing team)
Organization name(Japanese) Organization name(English) Journal name(Japanese) Journal name(English) Title Period
Frontiers Frontiers in Moleculear Neuroscience Guest Editor Research Topic area: Protein Degradation, Aggregation, Membrane Trafficking and Exosomes in Neuronal Health and Disease -
Academic organizaions (peer-reviewer)
Organization name(Japanese) Organization name(English) Journal name(Japanese) Journal name(English) Period
Czech Repudblic Acadamy of Science -
Other activities (other)
Activity Misc Period
Volunteer judge for Middle and Grade School Science Fairs and Brain Awareness week. Salt Lake City, Utah, USA. 2003-2006
RIKEN Open Campus, explaining research to the public, Wako, Saitama, Japan. 2007-2013
Experience of living abroad
Organization Department Research theme Country Period
University of Utah Neurobiology and Anatomy Cellular and Molecular Mechnaisms of Neuronal Arborisation and synaptogenesis USA 2002/09/01-2006/09/18
RIKEN Brain Science Institute Cellular and Molecular Mechnaisms of Neuronal Arborisation and synaptogenesis Japan 2006/09/20-2013/03/31
Max Planck Institute of Brain Research Synaptic Plasticity Synaptic Plasticity Germany 2013/04/01-2015/03/31
Technical Universtiy of Munich Neuronal Cell Biology Cellular and Molecular Mechnaisms of Neuronal Arborisation and synaptogenesi Germany 2015/05/01-2018/04/12
German Center for Neurodegnerative Diseases (DZNE) Germany 2016/09/01-2018/04/12