遊佐 宏介

Last Update: 2021/06/24 10:55:35

Print

Name(Kanji/Kana/Abecedarium Latinum)
遊佐 宏介/ユサ コウスケ/Yusa, Kosuke
Primary Affiliation(Org1/Job title)
Institute for Frontier Life and Medical Sciences (inFront)/Professor
Affiliated programs (koza)
Org1 Job title
Graduate School of Medicine Professor
Graduate School of Medicine Professor
Academic Organizations You are Affiliated to in Japan
Organization name(Japanese) Organization name(English)
日本ゲノム編集学会 The Japanese Society for Genome Editing
日本癌学会 Japanese Cancer Association
日本がん分子標的治療学会 The Japanese Association for Molecular Target Therapy of Cancer
Academic Degree
Field(Japanese) Field(English) University(Japanese) University(English) Method
修士(農学) 東京大学
博士(医学) 大阪大学
Academic Resume (Graduate Schools)
University(Japanese) University(English) Faculty(Japanese) Faculty(English) Major(Japanese) Major(English) Completion Status
東京大学 University of Tokyo 大学院農学生命科学研究科修士課程生産環境生物学専攻 Graduate School of Aglicultual and Life Sciences 修了
大阪大学 Osaka University 大学院医学系研究科博士課程社会医学専攻 Graduate School of Medicine 修了
Academic Resume (Undergraduate School/Majors)
University(Japanese) University(English) Faculty(Japanese) Faculty(English) Major(s)(Japanese) Major(s)(English) Completion Status
大阪大学 Osaka University 工学部応用自然科学科 Faculty of Engineering 卒業
Work Experience
Period Organization(Japanese) Organization(English) Job title(Japanese) Job title(English)
2012/10/01-2018/09/31 ウェルカムサンガー研究所 Wellcome Sanger Institute グループリーダー Group Leader
2018/10/01- 京都大学ウイルス・再生医科学研究所 Institute for Frontier Life and Medical Sciences, Kyoto University 教授 Professor
ORCID ID
https://orcid.org/0000-0002-3442-021X
researchmap URL
https://researchmap.jp/kosukeyusa
Research Topics
(Japanese)
これまでは、ほ乳類細胞において順遺伝学手法を適用し網羅的遺伝子スクリーニングを実施するための遺伝学的ツールの開発を行い、2014年にゲノム編集技術CRISPR-Cas9システムを応用したCRISPRスクリーニング法を確立した。現在はこの手法を用いて、ヒトES/iPS細胞の多能性維持や細胞分化の分子機構の解明、また、がん細胞の増殖必須遺伝子の探索と分子機能解析、またがん治療薬に対する耐性・感受性因子の探索と分子機能解析を主要な研究テーマとしている。
(English)
The main focus of my past research was to develop genetic tools that allow us to conduct unbiased genetic screening, namely forward genetic screen. In 2014, using the CRISPR-Cas9 system, I developed a novel genetic screening method - CRISPR-KO screening. Using this screening technique, my current research focuses on understanding molecular mechanisms underlying pluripotency and cellular differentiation of human ES/iPS cells as well as growth-essential genes and drug-resistance/sensitization in cancer cells.
Fields of research (key words)
Key words(Japanese) Key words(English)
遺伝学 Genetics
遺伝子高額 Genetic engineering
幹細胞 Stem cell
がんと遺伝子 Cancer genes
エピジェネティクス Epigenetics
Published Papers
Author Author(Japanese) Author(English) Title Title(Japanese) Title(English) Bibliography Bibliography(Japanese) Bibliography(English) Publication date Refereed paper Language Publishing type Disclose
Yan Zi Au, Muxin Gu, Etienne De Braekeleer, Malgorzata Gozdecka, Demetrios Aspris, Yusuke Tarumoto, Jonathan Cooper, Jason Yu, Swee Hoe Ong, Xi Chen, Konstantinos Tzelepis, Brian J P Huntly, George Vassiliou, Kosuke Yusa Yan Zi Au, Muxin Gu, Etienne De Braekeleer, Malgorzata Gozdecka, Demetrios Aspris, Yusuke Tarumoto, Jonathan Cooper, Jason Yu, Swee Hoe Ong, Xi Chen, Konstantinos Tzelepis, Brian J P Huntly, George Vassiliou, Kosuke Yusa Yan Zi Au, Muxin Gu, Etienne De Braekeleer, Malgorzata Gozdecka, Demetrios Aspris, Yusuke Tarumoto, Jonathan Cooper, Jason Yu, Swee Hoe Ong, Xi Chen, Konstantinos Tzelepis, Brian J P Huntly, George Vassiliou, Kosuke Yusa KAT7 is a genetic vulnerability of acute myeloid leukemias driven by MLL rearrangements. KAT7 is a genetic vulnerability of acute myeloid leukemias driven by MLL rearrangements. KAT7 is a genetic vulnerability of acute myeloid leukemias driven by MLL rearrangements. Leukemia, 35, 4, 1012-1022 Leukemia, 35, 4, 1012-1022 Leukemia, 35, 4, 1012-1022 2021/04 Refereed English Research paper(scientific journal) Disclose to all
Emanuel Gonçalves, Mark Thomas, Fiona M Behan, Gabriele Picco, Clare Pacini, Felicity Allen, Alessandro Vinceti, Mamta Sharma, David A Jackson, Stacey Price, Charlotte M Beaver, Oliver Dovey, David Parry-Smith, Francesco Iorio, Leopold Parts, Kosuke Yusa, Mathew J Garnett Emanuel Gonçalves, Mark Thomas, Fiona M Behan, Gabriele Picco, Clare Pacini, Felicity Allen, Alessandro Vinceti, Mamta Sharma, David A Jackson, Stacey Price, Charlotte M Beaver, Oliver Dovey, David Parry-Smith, Francesco Iorio, Leopold Parts, Kosuke Yusa, Mathew J Garnett Emanuel Gonçalves, Mark Thomas, Fiona M Behan, Gabriele Picco, Clare Pacini, Felicity Allen, Alessandro Vinceti, Mamta Sharma, David A Jackson, Stacey Price, Charlotte M Beaver, Oliver Dovey, David Parry-Smith, Francesco Iorio, Leopold Parts, Kosuke Yusa, Mathew J Garnett Minimal genome-wide human CRISPR-Cas9 library. Minimal genome-wide human CRISPR-Cas9 library. Minimal genome-wide human CRISPR-Cas9 library. Genome biology, 22, 1, 40-40 Genome biology, 22, 1, 40-40 Genome biology, 22, 1, 40-40 2021/01/21 English Research paper(scientific journal) Disclose to all
Oliver Thompson, Ferdinand von Meyenn, Zoe Hewitt, John Alexander, Andrew Wood, Richard Weightman, Sian Gregory, Felix Krueger, Simon Andrews, Ivana Barbaric, Paul J Gokhale, Harry D Moore, Wolf Reik, Marta Milo, Serena Nik-Zainal, Kosuke Yusa, Peter W Andrews Oliver Thompson, Ferdinand von Meyenn, Zoe Hewitt, John Alexander, Andrew Wood, Richard Weightman, Sian Gregory, Felix Krueger, Simon Andrews, Ivana Barbaric, Paul J Gokhale, Harry D Moore, Wolf Reik, Marta Milo, Serena Nik-Zainal, Kosuke Yusa, Peter W Andrews Oliver Thompson, Ferdinand von Meyenn, Zoe Hewitt, John Alexander, Andrew Wood, Richard Weightman, Sian Gregory, Felix Krueger, Simon Andrews, Ivana Barbaric, Paul J Gokhale, Harry D Moore, Wolf Reik, Marta Milo, Serena Nik-Zainal, Kosuke Yusa, Peter W Andrews Low rates of mutation in clinical grade human pluripotent stem cells under different culture conditions. Low rates of mutation in clinical grade human pluripotent stem cells under different culture conditions. Low rates of mutation in clinical grade human pluripotent stem cells under different culture conditions. Nature communications, 11, 1, 1528-1528 Nature communications, 11, 1, 1528-1528 Nature communications, 11, 1, 1528-1528 2020/03/23 Refereed English Research paper(scientific journal) Disclose to all
Sankari Nagarajan, Shalini V Rao, Joseph Sutton, Danya Cheeseman, Shanade Dunn, Evangelia K Papachristou, Jose-Enrique Gonzalez Prada, Dominique-Laurent Couturier, Sanjeev Kumar, Kamal Kishore, Chandra Sekhar Reddy Chilamakuri, Silvia-Elena Glont, Emily Archer Goode, Cara Brodie, Naomi Guppy, Rachael Natrajan, Alejandra Bruna, Carlos Caldas, Alasdair Russell, Rasmus Siersbæk, Kosuke Yusa, Igor Chernukhin, Jason S Carroll Sankari Nagarajan, Shalini V Rao, Joseph Sutton, Danya Cheeseman, Shanade Dunn, Evangelia K Papachristou, Jose-Enrique Gonzalez Prada, Dominique-Laurent Couturier, Sanjeev Kumar, Kamal Kishore, Chandra Sekhar Reddy Chilamakuri, Silvia-Elena Glont, Emily Archer Goode, Cara Brodie, Naomi Guppy, Rachael Natrajan, Alejandra Bruna, Carlos Caldas, Alasdair Russell, Rasmus Siersbæk, Kosuke Yusa, Igor Chernukhin, Jason S Carroll Sankari Nagarajan, Shalini V Rao, Joseph Sutton, Danya Cheeseman, Shanade Dunn, Evangelia K Papachristou, Jose-Enrique Gonzalez Prada, Dominique-Laurent Couturier, Sanjeev Kumar, Kamal Kishore, Chandra Sekhar Reddy Chilamakuri, Silvia-Elena Glont, Emily Archer Goode, Cara Brodie, Naomi Guppy, Rachael Natrajan, Alejandra Bruna, Carlos Caldas, Alasdair Russell, Rasmus Siersbæk, Kosuke Yusa, Igor Chernukhin, Jason S Carroll ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response. ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response. ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response. Nature genetics, 52, 2, 187-197 Nature genetics, 52, 2, 187-197 Nature genetics, 52, 2, 187-197 2020/02 Refereed English Disclose to all
Joshua M Dempster, Clare Pacini, Sasha Pantel, Fiona M Behan, Thomas Green, John Krill-Burger, Charlotte M Beaver, Scott T Younger, Victor Zhivich, Hanna Najgebauer, Felicity Allen, Emanuel Gonçalves, Rebecca Shepherd, John G Doench, Kosuke Yusa, Francisca Vazquez, Leopold Parts, Jesse S Boehm, Todd R Golub, William C Hahn, David E Root, Mathew J Garnett, Aviad Tsherniak, Francesco Iorio Joshua M Dempster, Clare Pacini, Sasha Pantel, Fiona M Behan, Thomas Green, John Krill-Burger, Charlotte M Beaver, Scott T Younger, Victor Zhivich, Hanna Najgebauer, Felicity Allen, Emanuel Gonçalves, Rebecca Shepherd, John G Doench, Kosuke Yusa, Francisca Vazquez, Leopold Parts, Jesse S Boehm, Todd R Golub, William C Hahn, David E Root, Mathew J Garnett, Aviad Tsherniak, Francesco Iorio Joshua M Dempster, Clare Pacini, Sasha Pantel, Fiona M Behan, Thomas Green, John Krill-Burger, Charlotte M Beaver, Scott T Younger, Victor Zhivich, Hanna Najgebauer, Felicity Allen, Emanuel Gonçalves, Rebecca Shepherd, John G Doench, Kosuke Yusa, Francisca Vazquez, Leopold Parts, Jesse S Boehm, Todd R Golub, William C Hahn, David E Root, Mathew J Garnett, Aviad Tsherniak, Francesco Iorio Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets. Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets. Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets. Nature communications, 10, 1, 5817-5817 Nature communications, 10, 1, 5817-5817 Nature communications, 10, 1, 5817-5817 2019/12/20 Refereed English Disclose to all
Jason S L Yu, Kosuke Yusa Yu JSL, Yusa K Jason S L Yu, Kosuke Yusa Genome-wide CRISPR-Cas9 screening in mammalian cells. Genome-wide CRISPR-Cas9 screening in mammalian cells. Genome-wide CRISPR-Cas9 screening in mammalian cells. Methods (San Diego, Calif.), 164-165, 29-35 Methods (San Diego, Calif.), 164-165, 29-35 Methods (San Diego, Calif.), 164-165, 29-35 2019/07/15 Refereed English Disclose to all
Jason S L Yu, Giorgia Palano, Cindy Lim, Aldo Moggio, Lauren Drowley, Alleyn T Plowright, Mohammad Bohlooly-Y, Barry S Rosen, Emil M Hansson, Qing-Dong Wang, Kosuke Yusa Yu JSL, Palano G, Lim C, Moggio A, Drowley L, Plowright AT, Bohlooly-Y M, Rosen BS, Hansson EM, Wang QD, Yusa K Jason S L Yu, Giorgia Palano, Cindy Lim, Aldo Moggio, Lauren Drowley, Alleyn T Plowright, Mohammad Bohlooly-Y, Barry S Rosen, Emil M Hansson, Qing-Dong Wang, Kosuke Yusa CRISPR-Knockout Screen Identifies Dmap1 as a Regulator of Chemically Induced Reprogramming and Differentiation of Cardiac Progenitors. CRISPR-Knockout Screen Identifies Dmap1 as a Regulator of Chemically Induced Reprogramming and Differentiation of Cardiac Progenitors. CRISPR-Knockout Screen Identifies Dmap1 as a Regulator of Chemically Induced Reprogramming and Differentiation of Cardiac Progenitors. Stem cells (Dayton, Ohio), 37, 7, 958-972 Stem cells (Dayton, Ohio), 37, 7, 958-972 Stem cells (Dayton, Ohio), 37, 7, 958-972 2019/07 Refereed English Disclose to all
Gabriele Picco, Elisabeth D Chen, Luz Garcia Alonso, Fiona M Behan, Emanuel Gonçalves, Graham Bignell, Angela Matchan, Beiyuan Fu, Ruby Banerjee, Elizabeth Anderson, Adam Butler, Cyril H Benes, Ultan McDermott, David Dow, Francesco Iorio, Euan Stronach, Fengtang Yang, Kosuke Yusa, Julio Saez-Rodriguez, Mathew J Garnett Picco G, Chen ED, Alonso LG, Behan FM, Gonçalves E, Bignell G, Matchan A, Fu B, Banerjee R, Anderson E, Butler A, Benes CH, McDermott U, Dow D, Iorio F, Stronach E, Yang F, Yusa K, Saez-Rodriguez J, Garnett MJ Gabriele Picco, Elisabeth D Chen, Luz Garcia Alonso, Fiona M Behan, Emanuel Gonçalves, Graham Bignell, Angela Matchan, Beiyuan Fu, Ruby Banerjee, Elizabeth Anderson, Adam Butler, Cyril H Benes, Ultan McDermott, David Dow, Francesco Iorio, Euan Stronach, Fengtang Yang, Kosuke Yusa, Julio Saez-Rodriguez, Mathew J Garnett Functional linkage of gene fusions to cancer cell fitness assessed by pharmacological and CRISPR-Cas9 screening. Functional linkage of gene fusions to cancer cell fitness assessed by pharmacological and CRISPR-Cas9 screening. Functional linkage of gene fusions to cancer cell fitness assessed by pharmacological and CRISPR-Cas9 screening. Nature communications, 10, 1, 2198-2198 Nature communications, 10, 1, 2198-2198 Nature communications, 10, 1, 2198-2198 2019/05/16 Refereed English Disclose to all
Fiona M Behan, Francesco Iorio, Gabriele Picco, Emanuel Gonçalves, Charlotte M Beaver, Giorgia Migliardi, Rita Santos, Yanhua Rao, Francesco Sassi, Marika Pinnelli, Rizwan Ansari, Sarah Harper, David Adam Jackson, Rebecca McRae, Rachel Pooley, Piers Wilkinson, Dieudonne van der Meer, David Dow, Carolyn Buser-Doepner, Andrea Bertotti, Livio Trusolino, Euan A Stronach, Julio Saez-Rodriguez, Kosuke Yusa, Mathew J Garnett Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM, Migliardi G, Santos R, Rao Y, Sassi F, Pinnelli M, Ansari R, Harper S, Jackson DA, McRae R, Pooley R, Wilkinson P, van der Meer D, Dow D, Buser-Doepner C, Bertotti A, Trusolino L, Stronach EA, Saez-Rodriguez J, Yusa K, Garnett MJ Fiona M Behan, Francesco Iorio, Gabriele Picco, Emanuel Gonçalves, Charlotte M Beaver, Giorgia Migliardi, Rita Santos, Yanhua Rao, Francesco Sassi, Marika Pinnelli, Rizwan Ansari, Sarah Harper, David Adam Jackson, Rebecca McRae, Rachel Pooley, Piers Wilkinson, Dieudonne van der Meer, David Dow, Carolyn Buser-Doepner, Andrea Bertotti, Livio Trusolino, Euan A Stronach, Julio Saez-Rodriguez, Kosuke Yusa, Mathew J Garnett Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature, 568, 7753, 511-516 Nature, 568, 7753, 511-516 Nature, 568, 7753, 511-516 2019/04 Refereed English Disclose to all
Felicity Allen, Fiona Behan, Anton Khodak, Francesco Iorio, Kosuke Yusa, Mathew Garnett, Leopold Parts Allen F, Behan F, Khodak A, Iorio F, Yusa K, Garnett M, Parts L Felicity Allen, Fiona Behan, Anton Khodak, Francesco Iorio, Kosuke Yusa, Mathew Garnett, Leopold Parts JACKS: joint analysis of CRISPR/Cas9 knockout screens. JACKS: joint analysis of CRISPR/Cas9 knockout screens. JACKS: joint analysis of CRISPR/Cas9 knockout screens. Genome research, 29, 3, 464-471 Genome research, 29, 3, 464-471 Genome research, 29, 3, 464-471 2019/03 Refereed English Disclose to all
Johan Henriksson, Xi Chen, Tomás Gomes, Ubaid Ullah, Kerstin B Meyer, Ricardo Miragaia, Graham Duddy, Jhuma Pramanik, Kosuke Yusa, Riitta Lahesmaa, Sarah A Teichmann Henriksson J, Chen X, Gomes T, Ullah U, Meyer KB, Miragaia R, Duddy G, Pramanik J, Yusa K, Lahesmaa R, Teichmann SA Johan Henriksson, Xi Chen, Tomás Gomes, Ubaid Ullah, Kerstin B Meyer, Ricardo Miragaia, Graham Duddy, Jhuma Pramanik, Kosuke Yusa, Riitta Lahesmaa, Sarah A Teichmann Genome-wide CRISPR Screens in T Helper Cells Reveal Pervasive Crosstalk between Activation and Differentiation. Genome-wide CRISPR Screens in T Helper Cells Reveal Pervasive Crosstalk between Activation and Differentiation. Genome-wide CRISPR Screens in T Helper Cells Reveal Pervasive Crosstalk between Activation and Differentiation. Cell, 176, 4, 882-896 Cell, 176, 4, 882-896 Cell, 176, 4, 882-896 2019/02/07 Refereed English Disclose to all
Emanuel Gonçalves, Fiona M Behan, Sandra Louzada, Damien Arnol, Euan A Stronach, Fengtang Yang, Kosuke Yusa, Oliver Stegle, Francesco Iorio, Mathew J Garnett Gonçalves E, Behan FM, Louzada S, Arnol D, Stronach EA, Yang F, Yusa K, Stegle O, Iorio F, Garnett MJ Emanuel Gonçalves, Fiona M Behan, Sandra Louzada, Damien Arnol, Euan A Stronach, Fengtang Yang, Kosuke Yusa, Oliver Stegle, Francesco Iorio, Mathew J Garnett Structural rearrangements generate cell-specific, gene-independent CRISPR-Cas9 loss of fitness effects. Structural rearrangements generate cell-specific, gene-independent CRISPR-Cas9 loss of fitness effects. Structural rearrangements generate cell-specific, gene-independent CRISPR-Cas9 loss of fitness effects. Genome biology, 20, 1, 27-27 Genome biology, 20, 1, 27-27 Genome biology, 20, 1, 27-27 2019/02/05 Refereed English Disclose to all
Gabriel Balmus, Domenic Pilger, Julia Coates, Mukerrem Demir, Matylda Sczaniecka-Clift, Ana C Barros, Michael Woods, Beiyuan Fu, Fengtang Yang, Elisabeth Chen, Matthias Ostermaier, Tatjana Stankovic, Hannes Ponstingl, Mareike Herzog, Kosuke Yusa, Francisco Munoz Martinez, Stephen T Durant, Yaron Galanty, Petra Beli, David J Adams, Allan Bradley, Emmanouil Metzakopian, Josep V Forment, Stephen P Jackson Balmus G, Pilger D, Coates J, Demir M, Sczaniecka-Clift M, Barros AC, Woods M, Fu B, Yang F, Chen E, Ostermaier M, Stankovic T, Ponstingl H, Herzog M, Yusa K, Martinez FM, Durant ST, Galanty Y, Beli P, Adams DJ, Bradley A, Metzakopian E, Forment JV, Jackson SP Gabriel Balmus, Domenic Pilger, Julia Coates, Mukerrem Demir, Matylda Sczaniecka-Clift, Ana C Barros, Michael Woods, Beiyuan Fu, Fengtang Yang, Elisabeth Chen, Matthias Ostermaier, Tatjana Stankovic, Hannes Ponstingl, Mareike Herzog, Kosuke Yusa, Francisco Munoz Martinez, Stephen T Durant, Yaron Galanty, Petra Beli, David J Adams, Allan Bradley, Emmanouil Metzakopian, Josep V Forment, Stephen P Jackson ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks. ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks. ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks. Nature communications, 10, 1, 87-87 Nature communications, 10, 1, 87-87 Nature communications, 10, 1, 87-87 2019/01/08 Refereed English Disclose to all
Konstantinos Tzelepis, Etienne De Braekeleer, Demetrios Aspris, Isaia Barbieri, M S Vijayabaskar, Wen-Hsin Liu, Malgorzata Gozdecka, Emmanouil Metzakopian, Hamish D Toop, Monika Dudek, Samuel C Robson, Francisco Hermida-Prado, Yu Hsuen Yang, Roya Babaei-Jadidi, Dimitrios A Garyfallos, Hannes Ponstingl, Joao M L Dias, Paolo Gallipoli, Michael Seiler, Silvia Buonamici, Binje Vick, Andrew J Bannister, Roland Rad, Rab K Prinjha, John C Marioni, Brian Huntly, Jennifer Batson, Jonathan C Morris, Cristina Pina, Allan Bradley, Irmela Jeremias, David O Bates, Kosuke Yusa, Tony Kouzarides, George S Vassiliou Tzelepis K, De Braekeleer E, Aspris D, Barbieri I, Vijayabaskar MS, Liu WH, Gozdecka M, Metzakopian E, Toop HD, Dudek M, Robson SC, Hermida-Prado F, Yang YH, Babaei-Jadidi R, Garyfallos DA, Ponstingl H, Dias JML, Gallipoli P, Seiler M, Buonamici S, Vick B, Bannister AJ, Rad R, Prinjha RK, Marioni JC, Huntly B, Batson J, Morris JC, Pina C, Bradley A, Jeremias I, Bates DO, Yusa K, Kouzarides T, Vassiliou GS Konstantinos Tzelepis, Etienne De Braekeleer, Demetrios Aspris, Isaia Barbieri, M S Vijayabaskar, Wen-Hsin Liu, Malgorzata Gozdecka, Emmanouil Metzakopian, Hamish D Toop, Monika Dudek, Samuel C Robson, Francisco Hermida-Prado, Yu Hsuen Yang, Roya Babaei-Jadidi, Dimitrios A Garyfallos, Hannes Ponstingl, Joao M L Dias, Paolo Gallipoli, Michael Seiler, Silvia Buonamici, Binje Vick, Andrew J Bannister, Roland Rad, Rab K Prinjha, John C Marioni, Brian Huntly, Jennifer Batson, Jonathan C Morris, Cristina Pina, Allan Bradley, Irmela Jeremias, David O Bates, Kosuke Yusa, Tony Kouzarides, George S Vassiliou SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4. SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4. SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4. Nature communications, 9, 1, 5378-5378 Nature communications, 9, 1, 5378-5378 Nature communications, 9, 1, 5378-5378 2018/12/19 Refereed English Disclose to all
Zheng-Shan Chong, Shuhei Ohnishi, Kosuke Yusa, Gavin J Wright Chong ZS, Ohnishi S, Yusa K, Wright GJ Zheng-Shan Chong, Shuhei Ohnishi, Kosuke Yusa, Gavin J Wright Pooled extracellular receptor-ligand interaction screening using CRISPR activation. Pooled extracellular receptor-ligand interaction screening using CRISPR activation. Pooled extracellular receptor-ligand interaction screening using CRISPR activation. Genome biology, 19, 1, 205-205 Genome biology, 19, 1, 205-205 Genome biology, 19, 1, 205-205 2018/11/26 Refereed English Disclose to all
Sumana Sharma, S Josefin Bartholdson, Amalie C M Couch, Kosuke Yusa, Gavin J Wright Sharma S, Bartholdson SJ, Couch ACM, Yusa K, Wright GJ Sumana Sharma, S Josefin Bartholdson, Amalie C M Couch, Kosuke Yusa, Gavin J Wright Genome-scale identification of cellular pathways required for cell surface recognition. Genome-scale identification of cellular pathways required for cell surface recognition. Genome-scale identification of cellular pathways required for cell surface recognition. Genome research, 28, 9, 1372-1382 Genome research, 28, 9, 1372-1382 Genome research, 28, 9, 1372-1382 2018/09 Refereed English Disclose to all
Francesco Iorio, Fiona M Behan, Emanuel Gonçalves, Shriram G Bhosle, Elisabeth Chen, Rebecca Shepherd, Charlotte Beaver, Rizwan Ansari, Rachel Pooley, Piers Wilkinson, Sarah Harper, Adam P Butler, Euan A Stronach, Julio Saez-Rodriguez, Kosuke Yusa, Mathew J Garnett Iorio F, Behan FM, Gonçalves E, Bhosle SG, Chen E, Shepherd R, Beaver C, Ansari R, Pooley R, Wilkinson P, Harper S, Butler AP, Stronach EA, Saez-Rodriguez J, Yusa K, Garnett MJ Francesco Iorio, Fiona M Behan, Emanuel Gonçalves, Shriram G Bhosle, Elisabeth Chen, Rebecca Shepherd, Charlotte Beaver, Rizwan Ansari, Rachel Pooley, Piers Wilkinson, Sarah Harper, Adam P Butler, Euan A Stronach, Julio Saez-Rodriguez, Kosuke Yusa, Mathew J Garnett Unsupervised correction of gene-independent cell responses to CRISPR-Cas9 targeting. Unsupervised correction of gene-independent cell responses to CRISPR-Cas9 targeting. Unsupervised correction of gene-independent cell responses to CRISPR-Cas9 targeting. BMC genomics, 19, 1, 604-604 BMC genomics, 19, 1, 604-604 BMC genomics, 19, 1, 604-604 2018/08/13 Refereed English Disclose to all
Meng Li, Jason S L Yu, Katarzyna Tilgner, Swee Hoe Ong, Hiroko Koike-Yusa, Kosuke Yusa Li M, Yu JSL, Tilgner K, Ong SH, Koike-Yusa H, Yusa K Meng Li, Jason S L Yu, Katarzyna Tilgner, Swee Hoe Ong, Hiroko Koike-Yusa, Kosuke Yusa Genome-wide CRISPR-KO Screen Uncovers mTORC1-Mediated Gsk3 Regulation in Naive Pluripotency Maintenance and Dissolution. Genome-wide CRISPR-KO Screen Uncovers mTORC1-Mediated Gsk3 Regulation in Naive Pluripotency Maintenance and Dissolution. Genome-wide CRISPR-KO Screen Uncovers mTORC1-Mediated Gsk3 Regulation in Naive Pluripotency Maintenance and Dissolution. Cell reports, 24, 2, 489-502 Cell reports, 24, 2, 489-502 Cell reports, 24, 2, 489-502 2018/07/10 Refereed English Disclose to all
Kei Fukuda, Akihiko Okuda, Kosuke Yusa, Yoichi Shinkai Fukuda K, Okuda A, Yusa K, Shinkai Y Kei Fukuda, Akihiko Okuda, Kosuke Yusa, Yoichi Shinkai A CRISPR knockout screen identifies SETDB1-target retroelement silencing factors in embryonic stem cells. A CRISPR knockout screen identifies SETDB1-target retroelement silencing factors in embryonic stem cells. A CRISPR knockout screen identifies SETDB1-target retroelement silencing factors in embryonic stem cells. Genome research, 28, 6, 846-858 Genome research, 28, 6, 846-858 Genome research, 28, 6, 846-858 2018/06 Refereed English Disclose to all
Stephen J Pettitt, Dragomir B Krastev, Inger Brandsma, Amy Dréan, Feifei Song, Radoslav Aleksandrov, Maria I Harrell, Malini Menon, Rachel Brough, James Campbell, Jessica Frankum, Michael Ranes, Helen N Pemberton, Rumana Rafiq, Kerry Fenwick, Amanda Swain, Sebastian Guettler, Jung-Min Lee, Elizabeth M Swisher, Stoyno Stoynov, Kosuke Yusa, Alan Ashworth, Christopher J Lord Pettitt SJ, Krastev DB, Brandsma I, Dréan A, Song F, Aleksandrov R, Harrell MI, Menon M, Brough R, Campbell J, Frankum J, Ranes M, Pemberton HN, Rafiq R, Fenwick K, Swain A, Guettler S, Lee JM, Swisher EM, Stoynov S, Yusa K, Ashworth A, Lord CJ Stephen J Pettitt, Dragomir B Krastev, Inger Brandsma, Amy Dréan, Feifei Song, Radoslav Aleksandrov, Maria I Harrell, Malini Menon, Rachel Brough, James Campbell, Jessica Frankum, Michael Ranes, Helen N Pemberton, Rumana Rafiq, Kerry Fenwick, Amanda Swain, Sebastian Guettler, Jung-Min Lee, Elizabeth M Swisher, Stoyno Stoynov, Kosuke Yusa, Alan Ashworth, Christopher J Lord Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Nature communications, 9, 1, 1849-1849 Nature communications, 9, 1, 1849-1849 Nature communications, 9, 1, 1849-1849 2018/05/10 Refereed English Disclose to all
Tyson Ruetz, Ulrich Pfisterer, Bruno Di Stefano, James Ashmore, Meryam Beniazza, Tian V Tian, Daniel F Kaemena, Luca Tosti, Wenfang Tan, Jonathan R Manning, Eleni Chantzoura, Daniella Rylander Ottosson, Samuel Collombet, Anna Johnsson, Erez Cohen, Kosuke Yusa, Sten Linnarsson, Thomas Graf, Malin Parmar, Keisuke Kaji Ruetz T, Pfisterer U, Di Stefano B, Ashmore J, Beniazza M, Tian TV, Kaemena DF, Tosti L, Tan W, Manning JR, Chantzoura E, Ottosson DR, Collombet S, Johnsson A, Cohen E, Yusa K, Linnarsson S, Graf T, Parmar M, Kaji K Tyson Ruetz, Ulrich Pfisterer, Bruno Di Stefano, James Ashmore, Meryam Beniazza, Tian V Tian, Daniel F Kaemena, Luca Tosti, Wenfang Tan, Jonathan R Manning, Eleni Chantzoura, Daniella Rylander Ottosson, Samuel Collombet, Anna Johnsson, Erez Cohen, Kosuke Yusa, Sten Linnarsson, Thomas Graf, Malin Parmar, Keisuke Kaji Constitutively Active SMAD2/3 Are Broad-Scope Potentiators of Transcription-Factor-Mediated Cellular Reprogramming. Constitutively Active SMAD2/3 Are Broad-Scope Potentiators of Transcription-Factor-Mediated Cellular Reprogramming. Constitutively Active SMAD2/3 Are Broad-Scope Potentiators of Transcription-Factor-Mediated Cellular Reprogramming. Cell stem cell, 21, 6, 791-805 Cell stem cell, 21, 6, 791-805 Cell stem cell, 21, 6, 791-805 2017/12/07 Refereed English Disclose to all
Oliver M Dovey, Jonathan L Cooper, Annalisa Mupo, Carolyn S Grove, Claire Lynn, Nathalie Conte, Robert M Andrews, Suruchi Pacharne, Konstantinos Tzelepis, M S Vijayabaskar, Paul Green, Roland Rad, Mark Arends, Penny Wright, Kosuke Yusa, Allan Bradley, Ignacio Varela, George S Vassiliou Dovey OM, Cooper JL, Mupo A, Grove CS, Lynn C, Conte N, Andrews RM, Pacharne S, Tzelepis K, Vijayabaskar MS, Green P, Rad R, Arends M, Wright P, Yusa K, Bradley A, Varela I, Vassiliou GS Oliver M Dovey, Jonathan L Cooper, Annalisa Mupo, Carolyn S Grove, Claire Lynn, Nathalie Conte, Robert M Andrews, Suruchi Pacharne, Konstantinos Tzelepis, M S Vijayabaskar, Paul Green, Roland Rad, Mark Arends, Penny Wright, Kosuke Yusa, Allan Bradley, Ignacio Varela, George S Vassiliou Molecular synergy underlies the co-occurrence patterns and phenotype of NPM1-mutant acute myeloid leukemia. Molecular synergy underlies the co-occurrence patterns and phenotype of <i>NPM1</i>-mutant acute myeloid leukemia. Molecular synergy underlies the co-occurrence patterns and phenotype of NPM1-mutant acute myeloid leukemia. Blood, 130, 17, 1911-1922 Blood, 130, 17, 1911-1922 Blood, 130, 17, 1911-1922 2017/10/26 Refereed English Disclose to all
Swee Hoe Ong, Yilong Li, Hiroko Koike-Yusa, Kosuke Yusa Ong SH, Li Y, Koike-Yusa H, Yusa K Swee Hoe Ong, Yilong Li, Hiroko Koike-Yusa, Kosuke Yusa Optimised metrics for CRISPR-KO screens with second-generation gRNA libraries. Optimised metrics for CRISPR-KO screens with second-generation gRNA libraries. Optimised metrics for CRISPR-KO screens with second-generation gRNA libraries. Scientific reports, 7, 1, 7384-7384 Scientific reports, 7, 1, 7384-7384 Scientific reports, 7, 1, 7384-7384 2017/08/07 Refereed English Disclose to all
Quinn Lu, George P Livi, Sundip Modha, Kosuke Yusa, Ricardo Macarrón, David J Dow Lu Q, Livi GP, Modha S, Yusa K, Macarrón R, Dow DJ Quinn Lu, George P Livi, Sundip Modha, Kosuke Yusa, Ricardo Macarrón, David J Dow Applications of CRISPR genome editing technology in drug target identification and validation. Applications of CRISPR genome editing technology in drug target identification and validation. Applications of CRISPR genome editing technology in drug target identification and validation. Expert opinion on drug discovery, 12, 6, 541-552 Expert opinion on drug discovery, 12, 6, 541-552 Expert opinion on drug discovery, 12, 6, 541-552 2017/06 Refereed English Disclose to all
Konstantinos Tzelepis, Hiroko Koike-Yusa, Etienne De Braekeleer, Yilong Li, Emmanouil Metzakopian, Oliver M Dovey, Annalisa Mupo, Vera Grinkevich, Meng Li, Milena Mazan, Malgorzata Gozdecka, Shuhei Ohnishi, Jonathan Cooper, Miten Patel, Thomas McKerrell, Bin Chen, Ana Filipa Domingues, Paolo Gallipoli, Sarah Teichmann, Hannes Ponstingl, Ultan McDermott, Julio Saez-Rodriguez, Brian J P Huntly, Francesco Iorio, Cristina Pina, George S Vassiliou, Kosuke Yusa Konstantinos Tzelepis, Hiroko Koike-Yusa, Etienne De Braekeleer, Yilong Li, Emmanouil Metzakopian, Oliver M Dovey, Annalisa Mupo, Vera Grinkevich, Meng Li, Milena Mazan, Malgorzata Gozdecka, Shuhei Ohnishi, Jonathan Cooper, Miten Patel, Thomas McKerrell, Bin Chen, Ana Filipa Domingues, Paolo Gallipoli, Sarah Teichmann, Hannes Ponstingl, Ultan McDermott, Julio Saez-Rodriguez, Brian J P Huntly, Francesco Iorio, Cristina Pina, George S Vassiliou, Kosuke Yusa Konstantinos Tzelepis, Hiroko Koike-Yusa, Etienne De Braekeleer, Yilong Li, Emmanouil Metzakopian, Oliver M Dovey, Annalisa Mupo, Vera Grinkevich, Meng Li, Milena Mazan, Malgorzata Gozdecka, Shuhei Ohnishi, Jonathan Cooper, Miten Patel, Thomas McKerrell, Bin Chen, Ana Filipa Domingues, Paolo Gallipoli, Sarah Teichmann, Hannes Ponstingl, Ultan McDermott, Julio Saez-Rodriguez, Brian J P Huntly, Francesco Iorio, Cristina Pina, George S Vassiliou, Kosuke Yusa A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia. A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia. A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia. Cell reports, 17, 4, 1193-1205 Cell reports, 17, 4, 1193-1205 Cell reports, 17, 4, 1193-1205 2016/10/18 Refereed English Disclose to all
Foad J Rouhani, Serena Nik-Zainal, Arthur Wuster, Yilong Li, Nathalie Conte, Hiroko Koike-Yusa, Natsuhiko Kumasaka, Ludovic Vallier, Kosuke Yusa, Allan Bradley Foad J Rouhani, Serena Nik-Zainal, Arthur Wuster, Yilong Li, Nathalie Conte, Hiroko Koike-Yusa, Natsuhiko Kumasaka, Ludovic Vallier, Kosuke Yusa, Allan Bradley Foad J Rouhani, Serena Nik-Zainal, Arthur Wuster, Yilong Li, Nathalie Conte, Hiroko Koike-Yusa, Natsuhiko Kumasaka, Ludovic Vallier, Kosuke Yusa, Allan Bradley Mutational History of a Human Cell Lineage from Somatic to Induced Pluripotent Stem Cells. Mutational History of a Human Cell Lineage from Somatic to Induced Pluripotent Stem Cells. Mutational History of a Human Cell Lineage from Somatic to Induced Pluripotent Stem Cells. PLoS genetics, 12, 4, e1005932 PLoS genetics, 12, 4, e1005932 PLoS genetics, 12, 4, e1005932 2016/04 Refereed English Disclose to all
Kosuke Yusa Kosuke Yusa Kosuke Yusa piggyBac Transposon. piggyBac Transposon. piggyBac Transposon. Microbiology spectrum, 3, 2, MDNA3-0028-2014 Microbiology spectrum, 3, 2, MDNA3-0028-2014 Microbiology spectrum, 3, 2, MDNA3-0028-2014 2015/04 Refereed English Disclose to all
E-Pien Tan, Yilong Li, Martin Del Castillo Velasco-Herrera, Kosuke Yusa, Allan Bradley E-Pien Tan, Yilong Li, Martin Del Castillo Velasco-Herrera, Kosuke Yusa, Allan Bradley E-Pien Tan, Yilong Li, Martin Del Castillo Velasco-Herrera, Kosuke Yusa, Allan Bradley Off-target assessment of CRISPR-Cas9 guiding RNAs in human iPS and mouse ES cells. Off-target assessment of CRISPR-Cas9 guiding RNAs in human iPS and mouse ES cells. Off-target assessment of CRISPR-Cas9 guiding RNAs in human iPS and mouse ES cells. Genesis (New York, N.Y. : 2000), 53, 2, 225-36 Genesis (New York, N.Y. : 2000), 53, 2, 225-36 Genesis (New York, N.Y. : 2000), 53, 2, 225-36 2015/02 Refereed English Disclose to all
Stephen J Pettitt, E-Pien Tan, Kosuke Yusa Stephen J Pettitt, E-Pien Tan, Kosuke Yusa Stephen J Pettitt, E-Pien Tan, Kosuke Yusa piggyBac transposon-based insertional mutagenesis in mouse haploid embryonic stem cells. piggyBac transposon-based insertional mutagenesis in mouse haploid embryonic stem cells. piggyBac transposon-based insertional mutagenesis in mouse haploid embryonic stem cells. Methods in molecular biology (Clifton, N.J.), 1239, 15-28 Methods in molecular biology (Clifton, N.J.), 1239, 15-28 Methods in molecular biology (Clifton, N.J.), 1239, 15-28 2015 Refereed English Disclose to all
Masahiro Tokunaga, Chikara Kokubu, Yusuke Maeda, Jun Sese, Kyoji Horie, Nakaba Sugimoto, Taroh Kinoshita, Kosuke Yusa, Junji Takeda Masahiro Tokunaga, Chikara Kokubu, Yusuke Maeda, Jun Sese, Kyoji Horie, Nakaba Sugimoto, Taroh Kinoshita, Kosuke Yusa, Junji Takeda Masahiro Tokunaga, Chikara Kokubu, Yusuke Maeda, Jun Sese, Kyoji Horie, Nakaba Sugimoto, Taroh Kinoshita, Kosuke Yusa, Junji Takeda Simulation and estimation of gene number in a biological pathway using almost complete saturation mutagenesis screening of haploid mouse cells. Simulation and estimation of gene number in a biological pathway using almost complete saturation mutagenesis screening of haploid mouse cells. Simulation and estimation of gene number in a biological pathway using almost complete saturation mutagenesis screening of haploid mouse cells. BMC genomics, 15, 1016-1016 BMC genomics, 15, 1016-1016 BMC genomics, 15, 1016-1016 2014/11/24 Refereed English Disclose to all
Ken Igawa, Chikara Kokubu, Kosuke Yusa, Kyoji Horie, Yasuhide Yoshimura, Kaori Yamauchi, Hirofumi Suemori, Hiroo Yokozeki, Masashi Toyoda, Nobutaka Kiyokawa, Hajime Okita, Yoshitaka Miyagawa, Hidenori Akutsu, Akihiro Umezawa, Ichiro Katayama, Junji Takeda Ken Igawa, Chikara Kokubu, Kosuke Yusa, Kyoji Horie, Yasuhide Yoshimura, Kaori Yamauchi, Hirofumi Suemori, Hiroo Yokozeki, Masashi Toyoda, Nobutaka Kiyokawa, Hajime Okita, Yoshitaka Miyagawa, Hidenori Akutsu, Akihiro Umezawa, Ichiro Katayama, Junji Takeda Ken Igawa, Chikara Kokubu, Kosuke Yusa, Kyoji Horie, Yasuhide Yoshimura, Kaori Yamauchi, Hirofumi Suemori, Hiroo Yokozeki, Masashi Toyoda, Nobutaka Kiyokawa, Hajime Okita, Yoshitaka Miyagawa, Hidenori Akutsu, Akihiro Umezawa, Ichiro Katayama, Junji Takeda Removal of reprogramming transgenes improves the tissue reconstitution potential of keratinocytes generated from human induced pluripotent stem cells. Removal of reprogramming transgenes improves the tissue reconstitution potential of keratinocytes generated from human induced pluripotent stem cells. Removal of reprogramming transgenes improves the tissue reconstitution potential of keratinocytes generated from human induced pluripotent stem cells. Stem cells translational medicine, 3, 9, 992-1001 Stem cells translational medicine, 3, 9, 992-1001 Stem cells translational medicine, 3, 9, 992-1001 2014/09 Refereed English Disclose to all
Hiroko Koike-Yusa, Yilong Li, E-Pien Tan, Martin Del Castillo Velasco-Herrera, Kosuke Yusa Hiroko Koike-Yusa, Yilong Li, E-Pien Tan, Martin Del Castillo Velasco-Herrera, Kosuke Yusa Hiroko Koike-Yusa, Yilong Li, E-Pien Tan, Martin Del Castillo Velasco-Herrera, Kosuke Yusa Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nature Biotechnology, 32, 3, 267-73 Nature Biotechnology, 32, 3, 267-73 Nature Biotechnology, 32, 3, 267-73 2014/03 Refereed English Disclose to all
Kosuke Yusa Kosuke Yusa Kosuke Yusa Seamless genome editing in human pluripotent stem cells using custom endonuclease-based gene targeting and the piggyBac transposon. Seamless genome editing in human pluripotent stem cells using custom endonuclease-based gene targeting and the piggyBac transposon. Seamless genome editing in human pluripotent stem cells using custom endonuclease-based gene targeting and the piggyBac transposon. Nature protocols, 8, 10, 2061-78 Nature protocols, 8, 10, 2061-78 Nature protocols, 8, 10, 2061-78 2013/10 Refereed English Disclose to all
Ayako Yamanishi, Kosuke Yusa, Kyoji Horie, Masahiro Tokunaga, Kohji Kusano, Chikara Kokubu, Junji Takeda Yamanishi A, Yusa K, Horie K, Tokunaga M, Kusano K, Kokubu C, Takeda J Ayako Yamanishi, Kosuke Yusa, Kyoji Horie, Masahiro Tokunaga, Kohji Kusano, Chikara Kokubu, Junji Takeda Enhancement of microhomology-mediated genomic rearrangements by transient loss of mouse Bloom syndrome helicase. Enhancement of microhomology-mediated genomic rearrangements by transient loss of mouse Bloom syndrome helicase. Enhancement of microhomology-mediated genomic rearrangements by transient loss of mouse Bloom syndrome helicase. Genome research, 23, 9, 1462-73 Genome research, 23, 9, 1462-73 Genome research, 23, 9, 1462-73 2013/09 Refereed English Disclose to all
Kei Miyamoto, Marta Teperek, Kosuke Yusa, George E Allen, Charles R Bradshaw, J B Gurdon Kei Miyamoto, Marta Teperek, Kosuke Yusa, George E Allen, Charles R Bradshaw, J B Gurdon Kei Miyamoto, Marta Teperek, Kosuke Yusa, George E Allen, Charles R Bradshaw, J B Gurdon Nuclear Wave1 is required for reprogramming transcription in oocytes and for normal development. Nuclear Wave1 is required for reprogramming transcription in oocytes and for normal development. Nuclear Wave1 is required for reprogramming transcription in oocytes and for normal development. Science (New York, N.Y.), 341, 6149, 1002-5 Science (New York, N.Y.), 341, 6149, 1002-5 Science (New York, N.Y.), 341, 6149, 1002-5 2013/08/30 Refereed English Disclose to all
Roland Rad, Juan Cadiñanos, Lena Rad, Ignacio Varela, Alexander Strong, Lydia Kriegl, Fernando Constantino-Casas, Stefan Eser, Maren Hieber, Barbara Seidler, Stacey Price, Mario F Fraga, Vincenzo Calvanese, Gary Hoffman, Hannes Ponstingl, Günter Schneider, Kosuke Yusa, Carolyn Grove, Roland M Schmid, Wei Wang, George Vassiliou, Thomas Kirchner, Ultan McDermott, Pentao Liu, Dieter Saur, Allan Bradley Rad R, Cadiñanos J, Rad L, Varela I, Strong A, Kriegl L, Constantino-Casas F, Eser S, Hieber M, Seidler B, Price S, Fraga MF, Calvanese V, Hoffman G, Ponstingl H, Schneider G, Yusa K, Grove C, Schmid RM, Wang W, Vassiliou G, Kirchner T, McDermott U, Liu P, Saur D, Bradley A Roland Rad, Juan Cadiñanos, Lena Rad, Ignacio Varela, Alexander Strong, Lydia Kriegl, Fernando Constantino-Casas, Stefan Eser, Maren Hieber, Barbara Seidler, Stacey Price, Mario F Fraga, Vincenzo Calvanese, Gary Hoffman, Hannes Ponstingl, Günter Schneider, Kosuke Yusa, Carolyn Grove, Roland M Schmid, Wei Wang, George Vassiliou, Thomas Kirchner, Ultan McDermott, Pentao Liu, Dieter Saur, Allan Bradley A genetic progression model of Braf(V600E)-induced intestinal tumorigenesis reveals targets for therapeutic intervention. A genetic progression model of Braf(V600E)-induced intestinal tumorigenesis reveals targets for therapeutic intervention. A genetic progression model of Braf(V600E)-induced intestinal tumorigenesis reveals targets for therapeutic intervention. Cancer cell, 24, 1, 15-29 Cancer cell, 24, 1, 15-29 Cancer cell, 24, 1, 15-29 2013/07/08 Refereed English Disclose to all
Meng Amy Li, Stephen J Pettitt, Sabine Eckert, Zemin Ning, Stephen Rice, Juan Cadiñanos, Kosuke Yusa, Nathalie Conte, Allan Bradley Li MA, Pettitt SJ, Eckert S, Ning Z, Rice S, Cadiñanos J, Yusa K, Conte N, Bradley A Meng Amy Li, Stephen J Pettitt, Sabine Eckert, Zemin Ning, Stephen Rice, Juan Cadiñanos, Kosuke Yusa, Nathalie Conte, Allan Bradley The piggyBac transposon displays local and distant reintegration preferences and can cause mutations at noncanonical integration sites. The piggyBac transposon displays local and distant reintegration preferences and can cause mutations at noncanonical integration sites. The piggyBac transposon displays local and distant reintegration preferences and can cause mutations at noncanonical integration sites. Molecular and cellular biology, 33, 7, 1317-30 Molecular and cellular biology, 33, 7, 1317-30 Molecular and cellular biology, 33, 7, 1317-30 2013/04 Refereed English Disclose to all
Joseph E Doherty, Leslie E Huye, Kosuke Yusa, Liqin Zhou, Nancy L Craig, Matthew H Wilson Doherty JE, Huye LE, Yusa K, Zhou L, Craig NL, Wilson MH Joseph E Doherty, Leslie E Huye, Kosuke Yusa, Liqin Zhou, Nancy L Craig, Matthew H Wilson Hyperactive piggyBac gene transfer in human cells and in vivo. Hyperactive piggyBac gene transfer in human cells and in vivo. Hyperactive piggyBac gene transfer in human cells and in vivo. Human gene therapy, 23, 3, 311-20 Human gene therapy, 23, 3, 311-20 Human gene therapy, 23, 3, 311-20 2012/03 Refereed English Disclose to all
Anastasia Nijnik, Simon Clare, Christine Hale, Claire Raisen, Rebecca E McIntyre, Kosuke Yusa, Aaron R Everitt, Lynda Mottram, Christine Podrini, Mark Lucas, Jeanne Estabel, David Goulding, Niels Adams, Ramiro Ramirez-Solis, Jacqui K White, David J Adams, Robert E W Hancock, Gordon Dougan Nijnik A, Clare S, Hale C, Raisen C, McIntyre RE, Yusa K, Everitt AR, Mottram L, Podrini C, Lucas M, Estabel J, Goulding D, Sanger Institute Microarray Facility, Sanger Mouse, Genetics Project, Adams N, Ramirez-Solis R, White JK, Adams DJ, Hancock RE, Dougan G Anastasia Nijnik, Simon Clare, Christine Hale, Claire Raisen, Rebecca E McIntyre, Kosuke Yusa, Aaron R Everitt, Lynda Mottram, Christine Podrini, Mark Lucas, Jeanne Estabel, David Goulding, Niels Adams, Ramiro Ramirez-Solis, Jacqui K White, David J Adams, Robert E W Hancock, Gordon Dougan The critical role of histone H2A-deubiquitinase Mysm1 in hematopoiesis and lymphocyte differentiation. The critical role of histone H2A-deubiquitinase Mysm1 in hematopoiesis and lymphocyte differentiation. The critical role of histone H2A-deubiquitinase Mysm1 in hematopoiesis and lymphocyte differentiation. Blood, 119, 6, 1370-9 Blood, 119, 6, 1370-9 Blood, 119, 6, 1370-9 2012/02/09 Refereed English Disclose to all
Meng Amy Li, Daniel J Turner, Zemin Ning, Kosuke Yusa, Qi Liang, Sabine Eckert, Lena Rad, Tomas W Fitzgerald, Nancy L Craig, Allan Bradley Li MA, Turner DJ, Ning Z, Yusa K, Liang Q, Eckert S, Rad L, Fitzgerald TW, Craig NL, Bradley A Meng Amy Li, Daniel J Turner, Zemin Ning, Kosuke Yusa, Qi Liang, Sabine Eckert, Lena Rad, Tomas W Fitzgerald, Nancy L Craig, Allan Bradley Mobilization of giant piggyBac transposons in the mouse genome. Mobilization of giant piggyBac transposons in the mouse genome. Mobilization of giant piggyBac transposons in the mouse genome. Nucleic acids research, 39, 22, e148 Nucleic acids research, 39, 22, e148 Nucleic acids research, 39, 22, e148 2011/12 Refereed English Disclose to all
Kyoji Horie, Chikara Kokubu, Junko Yoshida, Keiko Akagi, Ayako Isotani, Akiko Oshitani, Kosuke Yusa, Ryuji Ikeda, Yue Huang, Allan Bradley, Junji Takeda Horie K, Kokubu C, Yoshida J, Akagi K, Isotani A, Oshitani A, Yusa K, Ikeda R, Huang Y, Bradley A, Takeda J Kyoji Horie, Chikara Kokubu, Junko Yoshida, Keiko Akagi, Ayako Isotani, Akiko Oshitani, Kosuke Yusa, Ryuji Ikeda, Yue Huang, Allan Bradley, Junji Takeda A homozygous mutant embryonic stem cell bank applicable for phenotype-driven genetic screening. A homozygous mutant embryonic stem cell bank applicable for phenotype-driven genetic screening. A homozygous mutant embryonic stem cell bank applicable for phenotype-driven genetic screening. Nature methods, 8, 12, 1071-7 Nature methods, 8, 12, 1071-7 Nature methods, 8, 12, 1071-7 2011/10/23 Refereed English Disclose to all
Kosuke Yusa, S Tamir Rashid, Helene Strick-Marchand, Ignacio Varela, Pei-Qi Liu, David E Paschon, Elena Miranda, Adriana Ordóñez, Nicholas R F Hannan, Foad J Rouhani, Sylvie Darche, Graeme Alexander, Stefan J Marciniak, Noemi Fusaki, Mamoru Hasegawa, Michael C Holmes, James P Di Santo, David A Lomas, Allan Bradley, Ludovic Vallier Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, Miranda E, Ordóñez A, Hannan NR, Rouhani FJ, Darche S, Alexander G, Marciniak SJ, Fusaki N, Hasegawa M, Holmes MC, Di Santo JP, Lomas DA, Bradley A, Vallier L Kosuke Yusa, S Tamir Rashid, Helene Strick-Marchand, Ignacio Varela, Pei-Qi Liu, David E Paschon, Elena Miranda, Adriana Ordóñez, Nicholas R F Hannan, Foad J Rouhani, Sylvie Darche, Graeme Alexander, Stefan J Marciniak, Noemi Fusaki, Mamoru Hasegawa, Michael C Holmes, James P Di Santo, David A Lomas, Allan Bradley, Ludovic Vallier Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature, 478, 7369, 391-4 Nature, 478, 7369, 391-4 Nature, 478, 7369, 391-4 2011/10/12 Refereed English Disclose to all
Jeannine R LaRocque, Jeremy M Stark, Jin Oh, Ekaterina Bojilova, Kosuke Yusa, Kyoji Horie, Junji Takeda, Maria Jasin LaRocque JR, Stark JM, Oh J, Bojilova E, Yusa K, Horie K, Takeda J, Jasin M Jeannine R LaRocque, Jeremy M Stark, Jin Oh, Ekaterina Bojilova, Kosuke Yusa, Kyoji Horie, Junji Takeda, Maria Jasin Interhomolog recombination and loss of heterozygosity in wild-type and Bloom syndrome helicase (BLM)-deficient mammalian cells. Interhomolog recombination and loss of heterozygosity in wild-type and Bloom syndrome helicase (BLM)-deficient mammalian cells. Interhomolog recombination and loss of heterozygosity in wild-type and Bloom syndrome helicase (BLM)-deficient mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 108, 29, 11971-6 Proceedings of the National Academy of Sciences of the United States of America, 108, 29, 11971-6 Proceedings of the National Academy of Sciences of the United States of America, 108, 29, 11971-6 2011/07/19 Refereed English Disclose to all
Kosuke Yusa, Liqin Zhou, Meng Amy Li, Allan Bradley, Nancy L Craig Yusa K, Zhou L, Li MA, Bradley A, Craig NL Kosuke Yusa, Liqin Zhou, Meng Amy Li, Allan Bradley, Nancy L Craig A hyperactive piggyBac transposase for mammalian applications. A hyperactive piggyBac transposase for mammalian applications. A hyperactive piggyBac transposase for mammalian applications. Proceedings of the National Academy of Sciences of the United States of America, 108, 4, 1531-6 Proceedings of the National Academy of Sciences of the United States of America, 108, 4, 1531-6 Proceedings of the National Academy of Sciences of the United States of America, 108, 4, 1531-6 2011/01/25 Refereed English Disclose to all
Roland Rad, Lena Rad, Wei Wang, Juan Cadinanos, George Vassiliou, Stephen Rice, Lia S Campos, Kosuke Yusa, Ruby Banerjee, Meng Amy Li, Jorge de la Rosa, Alexander Strong, Dong Lu, Peter Ellis, Nathalie Conte, Fang Tang Yang, Pentao Liu, Allan Bradley Rad R, Rad L, Wang W, Cadinanos J, Vassiliou G, Rice S, Campos LS, Yusa K, Banerjee R, Li MA, de la Rosa J, Strong A, Lu D, Ellis P, Conte N, Yang FT, Liu P, Bradley A Roland Rad, Lena Rad, Wei Wang, Juan Cadinanos, George Vassiliou, Stephen Rice, Lia S Campos, Kosuke Yusa, Ruby Banerjee, Meng Amy Li, Jorge de la Rosa, Alexander Strong, Dong Lu, Peter Ellis, Nathalie Conte, Fang Tang Yang, Pentao Liu, Allan Bradley PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science (New York, N.Y.), 330, 6007, 1104-7 Science (New York, N.Y.), 330, 6007, 1104-7 Science (New York, N.Y.), 330, 6007, 1104-7 2010/11/19 Refereed English Disclose to all
Prashant Mali, Bin-Kuan Chou, Jonathan Yen, Zhaohui Ye, Jizhong Zou, Sarah Dowey, Robert A Brodsky, Joyce E Ohm, Wayne Yu, Stephen B Baylin, Kosuke Yusa, Allan Bradley, David J Meyers, Chandrani Mukherjee, Philip A Cole, Linzhao Cheng Mali P, Chou BK, Yen J, Ye Z, Zou J, Dowey S, Brodsky RA, Ohm JE, Yu W, Baylin SB, Yusa K, Bradley A, Meyers DJ, Mukherjee C, Cole PA, Cheng L Prashant Mali, Bin-Kuan Chou, Jonathan Yen, Zhaohui Ye, Jizhong Zou, Sarah Dowey, Robert A Brodsky, Joyce E Ohm, Wayne Yu, Stephen B Baylin, Kosuke Yusa, Allan Bradley, David J Meyers, Chandrani Mukherjee, Philip A Cole, Linzhao Cheng Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem cells (Dayton, Ohio), 28, 4, 713-20 Stem cells (Dayton, Ohio), 28, 4, 713-20 Stem cells (Dayton, Ohio), 28, 4, 713-20 2010/04 Refereed English Disclose to all
Meng Amy Li, Stephen J Pettitt, Kosuke Yusa, Allan Bradley Li MA, Pettitt SJ, Yusa K, Bradley A Meng Amy Li, Stephen J Pettitt, Kosuke Yusa, Allan Bradley Genome-wide forward genetic screens in mouse ES cells. Genome-wide forward genetic screens in mouse ES cells. Genome-wide forward genetic screens in mouse ES cells. Methods in enzymology, 477, 217-42 Methods in enzymology, 477, 217-42 Methods in enzymology, 477, 217-42 2010 Refereed English Disclose to all
Yasuhito Watanabe, Kiyoshi Inoue, Ayako Okuyama-Yamamoto, Nobuhiro Nakai, Jin Nakatani, Ken-Ichi Nibu, Naoko Sato, Yasuhiko Iiboshi, Kosuke Yusa, Gen Kondoh, Junji Takeda, Toshio Terashima, Toru Takumi Watanabe Y, Inoue K, Okuyama-Yamamoto A, Nakai N, Nakatani J, Nibu K, Sato N, Iiboshi Y, Yusa K, Kondoh G, Takeda J, Terashima T, Takumi T Yasuhito Watanabe, Kiyoshi Inoue, Ayako Okuyama-Yamamoto, Nobuhiro Nakai, Jin Nakatani, Ken-Ichi Nibu, Naoko Sato, Yasuhiko Iiboshi, Kosuke Yusa, Gen Kondoh, Junji Takeda, Toshio Terashima, Toru Takumi Fezf1 is required for penetration of the basal lamina by olfactory axons to promote olfactory development. Fezf1 is required for penetration of the basal lamina by olfactory axons to promote olfactory development. Fezf1 is required for penetration of the basal lamina by olfactory axons to promote olfactory development. The Journal of comparative neurology, 515, 5, 565-84 The Journal of comparative neurology, 515, 5, 565-84 The Journal of comparative neurology, 515, 5, 565-84 2009/08/10 Refereed English Disclose to all
Kosuke Yusa, Roland Rad, Junji Takeda, Allan Bradley Yusa K, Rad R, Takeda J, Bradley A Kosuke Yusa, Roland Rad, Junji Takeda, Allan Bradley Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nature methods, 6, 5, 363-9 Nature methods, 6, 5, 363-9 Nature methods, 6, 5, 363-9 2009/05 Refereed English Disclose to all
Ryuji Ikeda, Chikara Kokubu, Kosuke Yusa, Vincent W Keng, Kyoji Horie, Junji Takeda Ikeda R, Kokubu C, Yusa K, Keng VW, Horie K, Takeda J Ryuji Ikeda, Chikara Kokubu, Kosuke Yusa, Vincent W Keng, Kyoji Horie, Junji Takeda Sleeping beauty transposase has an affinity for heterochromatin conformation. Sleeping beauty transposase has an affinity for heterochromatin conformation. Sleeping beauty transposase has an affinity for heterochromatin conformation. Molecular and cellular biology, 27, 5, 1665-76 Molecular and cellular biology, 27, 5, 1665-76 Molecular and cellular biology, 27, 5, 1665-76 2007/03 Refereed English Disclose to all
Koichi Akiyama, Kosuke Yusa, Hideharu Hashimoto, Anuradha Poonepalli, Manoor Prakash Hande, Naoki Kakazu, Junji Takeda, Makoto Tachibana, Yoichi Shinkai Koichi Akiyama, Kosuke Yusa, Hideharu Hashimoto, Anuradha Poonepalli, Manoor Prakash Hande, Naoki Kakazu, Junji Takeda, Makoto Tachibana, Yoichi Shinkai Koichi Akiyama, Kosuke Yusa, Hideharu Hashimoto, Anuradha Poonepalli, Manoor Prakash Hande, Naoki Kakazu, Junji Takeda, Makoto Tachibana, Yoichi Shinkai Rad54 is dispensable for the ALT pathway. Rad54 is dispensable for the ALT pathway. Rad54 is dispensable for the ALT pathway. Genes to cells : devoted to molecular & cellular mechanisms, 11, 11, 1305-15 Genes to cells : devoted to molecular & cellular mechanisms, 11, 11, 1305-15 Genes to cells : devoted to molecular & cellular mechanisms, 11, 11, 1305-15 2006/11 Refereed English Research paper(scientific journal) Disclose to all
Kojiro Yae, Vincent W Keng, Masato Koike, Kosuke Yusa, Michiyoshi Kouno, Yoshihiro Uno, Gen Kondoh, Takahiro Gotow, Yasuo Uchiyama, Kyoji Horie, Junji Takeda Kojiro Yae, Vincent W Keng, Masato Koike, Kosuke Yusa, Michiyoshi Kouno, Yoshihiro Uno, Gen Kondoh, Takahiro Gotow, Yasuo Uchiyama, Kyoji Horie, Junji Takeda Kojiro Yae, Vincent W Keng, Masato Koike, Kosuke Yusa, Michiyoshi Kouno, Yoshihiro Uno, Gen Kondoh, Takahiro Gotow, Yasuo Uchiyama, Kyoji Horie, Junji Takeda Sleeping beauty transposon-based phenotypic analysis of mice: lack of Arpc3 results in defective trophoblast outgrowth. Sleeping beauty transposon-based phenotypic analysis of mice: lack of Arpc3 results in defective trophoblast outgrowth. Sleeping beauty transposon-based phenotypic analysis of mice: lack of Arpc3 results in defective trophoblast outgrowth. Molecular and cellular biology, 26, 16, 6185-96 Molecular and cellular biology, 26, 16, 6185-96 Molecular and cellular biology, 26, 16, 6185-96 2006/08 Refereed English Research paper(scientific journal) Disclose to all
Tomoko Hayakawa, Kosuke Yusa, Michiyoshi Kouno, Junji Takeda, Kyoji Horie Tomoko Hayakawa, Kosuke Yusa, Michiyoshi Kouno, Junji Takeda, Kyoji Horie Tomoko Hayakawa, Kosuke Yusa, Michiyoshi Kouno, Junji Takeda, Kyoji Horie Bloom's syndrome gene-deficient phenotype in mouse primary cells induced by a modified tetracycline-controlled trans-silencer. Bloom's syndrome gene-deficient phenotype in mouse primary cells induced by a modified tetracycline-controlled trans-silencer. Bloom's syndrome gene-deficient phenotype in mouse primary cells induced by a modified tetracycline-controlled trans-silencer. Gene, 369, 80-9 Gene, 369, 80-9 Gene, 369, 80-9 2006/03/15 Refereed English Research paper(scientific journal) Disclose to all
J. Takeda, K. Horie, K. Yusa J. Takeda, K. Horie, K. Yusa J. Takeda, K. Horie, K. Yusa New strategy for comprehensive analysis of gene functions in embryonic stem cells New strategy for comprehensive analysis of gene functions in embryonic stem cells New strategy for comprehensive analysis of gene functions in embryonic stem cells STEM CELLS IN REPRODUCTION AND IN THE BRAIN, 60, 15-+ STEM CELLS IN REPRODUCTION AND IN THE BRAIN, 60, 15-+ STEM CELLS IN REPRODUCTION AND IN THE BRAIN, 60, 15-+ 2006 Refereed English Research paper(international conference proceedings) Disclose to all
Vincent W Keng, Kojiro Yae, Tomoko Hayakawa, Sumi Mizuno, Yoshihiro Uno, Kosuke Yusa, Chikara Kokubu, Taroh Kinoshita, Keiko Akagi, Nancy A Jenkins, Neal G Copeland, Kyoji Horie, Junji Takeda Vincent W Keng, Kojiro Yae, Tomoko Hayakawa, Sumi Mizuno, Yoshihiro Uno, Kosuke Yusa, Chikara Kokubu, Taroh Kinoshita, Keiko Akagi, Nancy A Jenkins, Neal G Copeland, Kyoji Horie, Junji Takeda Vincent W Keng, Kojiro Yae, Tomoko Hayakawa, Sumi Mizuno, Yoshihiro Uno, Kosuke Yusa, Chikara Kokubu, Taroh Kinoshita, Keiko Akagi, Nancy A Jenkins, Neal G Copeland, Kyoji Horie, Junji Takeda Region-specific saturation germline mutagenesis in mice using the Sleeping Beauty transposon system. Region-specific saturation germline mutagenesis in mice using the Sleeping Beauty transposon system. Region-specific saturation germline mutagenesis in mice using the Sleeping Beauty transposon system. Nature methods, 2, 10, 763-9 Nature methods, 2, 10, 763-9 Nature methods, 2, 10, 763-9 2005/10 Refereed English Research paper(scientific journal) Disclose to all
Kosuke Yusa, Kyoji Horie, Gen Kondoh, Michiyoshi Kouno, Yusuke Maeda, Taroh Kinoshita, Junji Takeda Kosuke Yusa, Kyoji Horie, Gen Kondoh, Michiyoshi Kouno, Yusuke Maeda, Taroh Kinoshita, Junji Takeda Kosuke Yusa, Kyoji Horie, Gen Kondoh, Michiyoshi Kouno, Yusuke Maeda, Taroh Kinoshita, Junji Takeda Genome-wide phenotype analysis in ES cells by regulated disruption of Bloom's syndrome gene. Genome-wide phenotype analysis in ES cells by regulated disruption of Bloom's syndrome gene. Genome-wide phenotype analysis in ES cells by regulated disruption of Bloom's syndrome gene. Nature, 429, 6994, 896-9 Nature, 429, 6994, 896-9 Nature, 429, 6994, 896-9 2004/06/24 Refereed English Research paper(scientific journal) Disclose to all
Kosuke Yusa, Junji Takeda, Kyoji Horie Yusa K, Takeda J, Horie K Kosuke Yusa, Junji Takeda, Kyoji Horie Enhancement of Sleeping Beauty transposition by CpG methylation: possible role of heterochromatin formation. Enhancement of Sleeping Beauty transposition by CpG methylation: possible role of heterochromatin formation. Enhancement of Sleeping Beauty transposition by CpG methylation: possible role of heterochromatin formation. Molecular and cellular biology, 24, 9, 4004-18 Molecular and cellular biology, 24, 9, 4004-18 Molecular and cellular biology, 24, 9, 4004-18 2004/05 Refereed English Disclose to all
Kyoji Horie, Kosuke Yusa, Kojiro Yae, Junko Odajima, Sylvia E J Fischer, Vincent W Keng, Tomoko Hayakawa, Sumi Mizuno, Gen Kondoh, Takashi Ijiri, Yoichi Matsuda, Ronald H A Plasterk, Junji Takeda Horie K, Yusa K, Yae K, Odajima J, Fischer SE, Keng VW, Hayakawa T, Mizuno S, Kondoh G, Ijiri T, Matsuda Y, Plasterk RH, Takeda J Kyoji Horie, Kosuke Yusa, Kojiro Yae, Junko Odajima, Sylvia E J Fischer, Vincent W Keng, Tomoko Hayakawa, Sumi Mizuno, Gen Kondoh, Takashi Ijiri, Yoichi Matsuda, Ronald H A Plasterk, Junji Takeda Characterization of Sleeping Beauty transposition and its application to genetic screening in mice. Characterization of Sleeping Beauty transposition and its application to genetic screening in mice. Characterization of Sleeping Beauty transposition and its application to genetic screening in mice. Molecular and cellular biology, 23, 24, 9189-207 Molecular and cellular biology, 23, 24, 9189-207 Molecular and cellular biology, 23, 24, 9189-207 2003/12 Refereed English Disclose to all

  • <<
  • >>
Title language:
Misc
Author Author(Japanese) Author(English) Title Title(Japanese) Title(English) Bibliography Bibliography(Japanese) Bibliography(English) Publication date Refereed paper Language Publishing type Disclose
Foad Rouhani, Serena Nik-Zainal, Ludovic Vallier, Kosuke Yusa, Allan Bradley Foad Rouhani, Serena Nik-Zainal, Ludovic Vallier, Kosuke Yusa, Allan Bradley Foad Rouhani, Serena Nik-Zainal, Ludovic Vallier, Kosuke Yusa, Allan Bradley TOWARDS PERSONALISED REGENERATIVE MEDICINE: MUTATIONS IN HUMAN INDUCED PLURIPOTENT STEM CELLS TOWARDS PERSONALISED REGENERATIVE MEDICINE: MUTATIONS IN HUMAN INDUCED PLURIPOTENT STEM CELLS TOWARDS PERSONALISED REGENERATIVE MEDICINE: MUTATIONS IN HUMAN INDUCED PLURIPOTENT STEM CELLS TRANSPLANT INTERNATIONAL, 30, 304-305 TRANSPLANT INTERNATIONAL, 30, 304-305 TRANSPLANT INTERNATIONAL, 30, 304-305 2017/09 English Research paper, summary (international conference) Disclose to all
Kei Fukuda, Kosuke Yusa, Yoichi Shinkai Kei Fukuda, Kosuke Yusa, Yoichi Shinkai Kei Fukuda, Kosuke Yusa, Yoichi Shinkai Identification of factors involved in provirus silencing by CRISPR-Cas9 system Identification of factors involved in provirus silencing by CRISPR-Cas9 system Identification of factors involved in provirus silencing by CRISPR-Cas9 system GENES & GENETIC SYSTEMS, 91, 6, 346-346 GENES & GENETIC SYSTEMS, 91, 6, 346-346 GENES & GENETIC SYSTEMS, 91, 6, 346-346 2016/12 English Research paper, summary (international conference) Disclose to all
Konstantinos Tzelepis, Hiroko Koike-Yusa, Etienne De Braekeleer, Yilong Li, Emmanouil Metzakopian, Oliver M. Dovey, Annalisa Mupo, Vera Grinkevich, Milena M. Mazan, Malgorzata Gozdecka, Jonathan L. Cooper, Miten Patel, Thomas David Hardman McKerrell, Bin Chen, Hannes Ponstingl, Brian J. P. Huntly, Ultan McDermott, Julio Saez-Rodriguez, Francesco Iorio, Kosuke Yusa, George S. Vassiliou Konstantinos Tzelepis, Hiroko Koike-Yusa, Etienne De Braekeleer, Yilong Li, Emmanouil Metzakopian, Oliver M. Dovey, Annalisa Mupo, Vera Grinkevich, Milena M. Mazan, Malgorzata Gozdecka, Jonathan L. Cooper, Miten Patel, Thomas David Hardman McKerrell, Bin Chen, Hannes Ponstingl, Brian J. P. Huntly, Ultan McDermott, Julio Saez-Rodriguez, Francesco Iorio, Kosuke Yusa, George S. Vassiliou Konstantinos Tzelepis, Hiroko Koike-Yusa, Etienne De Braekeleer, Yilong Li, Emmanouil Metzakopian, Oliver M. Dovey, Annalisa Mupo, Vera Grinkevich, Milena M. Mazan, Malgorzata Gozdecka, Jonathan L. Cooper, Miten Patel, Thomas David Hardman McKerrell, Bin Chen, Hannes Ponstingl, Brian J. P. Huntly, Ultan McDermott, Julio Saez-Rodriguez, Francesco Iorio, Kosuke Yusa, George S. Vassiliou A Crispr/Cas9 Drop-out Screen Identifies Genome-Wide Genetic Valnerubilities in Acute Myeloid Leukaemia A Crispr/Cas9 Drop-out Screen Identifies Genome-Wide Genetic Valnerubilities in Acute Myeloid Leukaemia A Crispr/Cas9 Drop-out Screen Identifies Genome-Wide Genetic Valnerubilities in Acute Myeloid Leukaemia BLOOD, 126, 23 BLOOD, 126, 23 BLOOD, 126, 23 2015/12 English Research paper, summary (international conference) Disclose to all
Kosuke Yusa Kosuke Yusa Kosuke Yusa Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library HUMAN GENE THERAPY, 26, 9, A3-A3 HUMAN GENE THERAPY, 26, 9, A3-A3 HUMAN GENE THERAPY, 26, 9, A3-A3 2015/09 English Research paper, summary (international conference) Disclose to all
S. Tamir Rashid, Kosuke Yusa, Helene Strick-Marchand, Foad Rouhani, Elena Miranda, Nicholas R. Hannan, Stefan J. Marciniak, Graeme J. Alexander, James Di Santo, Allan Bradley, David A. Lomas, Ludovic Vallier S. Tamir Rashid, Kosuke Yusa, Helene Strick-Marchand, Foad Rouhani, Elena Miranda, Nicholas R. Hannan, Stefan J. Marciniak, Graeme J. Alexander, James Di Santo, Allan Bradley, David A. Lomas, Ludovic Vallier S. Tamir Rashid, Kosuke Yusa, Helene Strick-Marchand, Foad Rouhani, Elena Miranda, Nicholas R. Hannan, Stefan J. Marciniak, Graeme J. Alexander, James Di Santo, Allan Bradley, David A. Lomas, Ludovic Vallier TOWARDS CELL BASED THERAPY FOR alpha 1-ANTITRYPSIN DEFICIENCY THROUGH TARGETED BI-ALLELIC GENE CORRECTION IN HUMAN IPS CELLS TOWARDS CELL BASED THERAPY FOR alpha 1-ANTITRYPSIN DEFICIENCY THROUGH TARGETED BI-ALLELIC GENE CORRECTION IN HUMAN IPS CELLS TOWARDS CELL BASED THERAPY FOR alpha 1-ANTITRYPSIN DEFICIENCY THROUGH TARGETED BI-ALLELIC GENE CORRECTION IN HUMAN IPS CELLS HEPATOLOGY, 54, 421A-421A HEPATOLOGY, 54, 421A-421A HEPATOLOGY, 54, 421A-421A 2011/10 English Research paper, summary (international conference) Disclose to all
Ken Igawa, Jun Harada, Yukinobu Nakagawa, Kyoji Horie, Kosuke Yusa, Hiroo Yokozeki, Junji Takeda, Ichiro Katayama Ken Igawa, Jun Harada, Yukinobu Nakagawa, Kyoji Horie, Kosuke Yusa, Hiroo Yokozeki, Junji Takeda, Ichiro Katayama Ken Igawa, Jun Harada, Yukinobu Nakagawa, Kyoji Horie, Kosuke Yusa, Hiroo Yokozeki, Junji Takeda, Ichiro Katayama A trial of in vitro reconstitution of human skin using transgene-free induced pluripotent stem cells A trial of in vitro reconstitution of human skin using transgene-free induced pluripotent stem cells A trial of in vitro reconstitution of human skin using transgene-free induced pluripotent stem cells JOURNAL OF INVESTIGATIVE DERMATOLOGY, 131, S77-S77 JOURNAL OF INVESTIGATIVE DERMATOLOGY, 131, S77-S77 JOURNAL OF INVESTIGATIVE DERMATOLOGY, 131, S77-S77 2011/09 English Research paper, summary (international conference) Disclose to all
Kyoji Horie, Kosuke Yusa, Junji Takeda Horie K, Yusa K, Takeda J Kyoji Horie, Kosuke Yusa, Junji Takeda [Recent progress in mouse transposon research]. [Recent progress in mouse transposon research]. [Recent progress in mouse transposon research]. Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme, 49, 13, 2117-22 Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme, 49, 13, 2117-22 Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme, 49, 13, 2117-22 2004/10 Japanese Disclose to all
Kosuke Yusa, Kyoji Horie, Junji Takeda Yusa K, Horie K, Takeda J Kosuke Yusa, Kyoji Horie, Junji Takeda [New perspectives on genetically engineered mice in post-genomic era]. [New perspectives on genetically engineered mice in post-genomic era]. [New perspectives on genetically engineered mice in post-genomic era]. Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme, 48, 3, 232-9 Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme, 48, 3, 232-9 Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme, 48, 3, 232-9 2003/03 Japanese Disclose to all
Title language:
Conference Activities & Talks
Title Title(Japanese) Title(English) Conference Conference(Japanese) Conference(English) Promotor Promotor(Japanese) Promotor(English) Date Language Assortment Disclose
CRISPR-KOスクリーニングの開発と応用[Invited] CRISPR-KOスクリーニングの開発と応用 [Invited] 第73回日本細胞生物学会大会 第73回日本細胞生物学会大会 2021/06/30 Oral presentation(invited, special) Disclose to all
CRISPR-KOスクリーニングの開発と応用[Invited] CRISPR-KOスクリーニングの開発と応用 [Invited] 日本生化学会北陸支部第39回大会 日本生化学会北陸支部第39回大会 2021/06/05 Oral presentation(invited, special) Disclose to all
Genetic Dissection of Pluripotency Maintenance using CRISPR-KO Screenning[Invited] Genetic Dissection of Pluripotency Maintenance using CRISPR-KO Screenning [Invited] 第110回日本病理学会総会 第110回日本病理学会総会 2021/04/22 Oral presentation(invited, special) Disclose to all
Development and Application of CRISPR-KO Screening[Invited] Development and Application of CRISPR-KO Screening [Invited] 第43回日本分子生物学会年会 第43回日本分子生物学会年会 2020/12/03 Oral presentation(invited, special) Disclose to all
CRISPR-KOスクリーニングの開発と創薬研究への応用[Invited] CRISPR-KOスクリーニングの開発と創薬研究への応用 [Invited] 千里ライフサイエンスセミナー 千里ライフサイエンスセミナー 2020/11/04 Oral presentation(invited, special) Disclose to all
Development and Application of CRISPR-KO Screening[Invited] Development and Application of CRISPR-KO Screening [Invited] 第79回日本癌学会学術総会 第79回日本癌学会学術総会 2020/10/01 Oral presentation(invited, special) Disclose to all
Development and Application of CRISPR-KO Screening[Invited] Development and Application of CRISPR-KO Screening [Invited] 熊本大学発生医学研究所 熊本大学発生医学研究所 2020/07/29 Public discourse, seminar, tutorial, course, lecture and others Disclose to all
Development and Application of Genome-Wide CRISPR-KO Screening[Invited] Development and Application of Genome-Wide CRISPR-KO Screening [Invited] 大阪大学微生物病研究所BRIDGEセミナー 大阪大学微生物病研究所BRIDGEセミナー 2020/02/07 Public discourse, seminar, tutorial, course, lecture and others Disclose to all
Development of CRISPR-KO screening and its application in oncology research[Invited] Development of CRISPR-KO screening and its application in oncology research [Invited] 愛知県がんセンター 愛知県がんセンター 2019/12/18 Public discourse, seminar, tutorial, course, lecture and others Disclose to all
Prioritization of cancer therapeutic targets using CRISRP-Cas9 screens[Invited] Prioritization of cancer therapeutic targets using CRISRP-Cas9 screens [Invited] 第8回Cancer Stem Cell Symposium 第8回Cancer Stem Cell Symposium 2019/11/30 Oral presentation(invited, special) Disclose to all
Development and Application of CRISPR-KO Screening[Invited] Development and Application of CRISPR-KO Screening [Invited] Frontiers in Genome Engineering 2019 Frontiers in Genome Engineering 2019 2019/11/25 Oral presentation(invited, special) Disclose to all
Development and Application of Genome-Wide CRISPR-KO Screening[Invited] Development and Application of Genome-Wide CRISPR-KO Screening [Invited] Development and Application of Genome-Wide CRISPR-KO Screening [Invited] 和歌山県立医科大学 和歌山県立医科大学 2019/11/14 Public discourse, seminar, tutorial, course, lecture and others Disclose to all
Development and Application of CRISPR-KO Screening[Invited] Development and Application of CRISPR-KO Screening [Invited] 第14回生命医科学研究所ネットワーク国際シンポジウム 第14回生命医科学研究所ネットワーク国際シンポジウム 2019/10/02 Disclose to all
Development and application of genome-wide CRISPR-KO screening[Invited] Development and application of genome-wide CRISPR-KO screening [Invited] Development and application of genome-wide CRISPR-KO screening [Invited] SULSA Disruptive technologies SULSA Disruptive technologies SULSA Disruptive technologies 2019/09/26 English Oral presentation(keynote) Disclose to all
Development and application of genome-wide CRISPR-KO screening[Invited] Development and application of genome-wide CRISPR-KO screening [Invited] 日本遺伝学会第91回大会 日本遺伝学会第91回大会 2019/09/13 English Oral presentation(invited, special) Disclose to all
Development and application of genome-wide CRISPR-KO screening[Invited] Development and application of genome-wide CRISPR-KO screening [Invited] Development and application of genome-wide CRISPR-KO screening [Invited] 東京大学先端科学技術研究センター 東京大学先端科学技術研究センター 2019/09/10 English Public discourse, seminar, tutorial, course, lecture and others Disclose to all
Development and application of genome-wide CRISPR-KO screening Development and application of genome-wide CRISPR-KO screening Development and application of genome-wide CRISPR-KO screening 高遠 分子細胞生物学シンポジウム 高遠 分子細胞生物学シンポジウム 2019/08/23 English Poster presentation Disclose to all
ゲノム編集技術を使ったがん研究[Invited] ゲノム編集技術を使ったがん研究 [Invited] ウイルス・再生医科学研究所公開講演会 ウイルス・再生医科学研究所公開講演会 2019/07/20 Japanese Public discourse, seminar, tutorial, course, lecture and others Disclose to all
Oncology drug candidates identified from a large-scale genome-wide CRISPR screen Oncology drug candidates identified from a large-scale genome-wide CRISPR screen Oncology drug candidates identified from a large-scale genome-wide CRISPR screen 理化学研究所 和光 理化学研究所 和光 2019/01/21 English Public discourse, seminar, tutorial, course, lecture and others Disclose to all

  • <<
  • >>
Title language:
Books etc
Author Author(Japanese) Author(English) Title Title(Japanese) Title(English) Publisher Publisher(Japanese) Publisher(English) Publication date Language Type Disclose
遊佐宏介 遊佐宏介 CRISPR-KOスクリーニングの開発と応用 CRISPR-KOスクリーニングの開発と応用 最新のゲノム編集技術と用途展開 最新のゲノム編集技術と用途展開 2020 Disclose to all
遊佐宏介 遊佐宏介 医療・創薬に向けたCRISPRスクリーニング 医療・創薬に向けたCRISPRスクリーニング 遺伝子医学 遺伝子医学 2020 Disclose to all
樽本雄介, 遊佐宏介 樽本雄介, 遊佐宏介 CRISPR/Cas9に遺伝学スクリーニングシステムの開発 CRISPR/Cas9に遺伝学スクリーニングシステムの開発 生体の科学 生体の科学 2020 Disclose to all
遊佐宏介 遊佐宏介 CRISPR-Cas9システムの遺伝学スクリーニングへの応用 CRISPR-Cas9システムの遺伝学スクリーニングへの応用 医学のあゆみ 医学のあゆみ 2020 Disclose to all
遊佐宏介 遊佐宏介 CRIPSRスクリーニングによる幹細胞制御因子の網羅的探索 CRIPSRスクリーニングによる幹細胞制御因子の網羅的探索 医学のあゆみ 医学のあゆみ 2020 Disclose to all
遊佐宏介 遊佐宏介 CRISPR-KOスクリーニングによるがん治療候補の優先化 CRISPR-KOスクリーニングによるがん治療候補の優先化 医学のあゆみ 医学のあゆみ 2020 Disclose to all
遊佐宏介 遊佐宏介 CRISPRライブラリーを用いた遺伝子スクリーニング法 CRISPRライブラリーを用いた遺伝子スクリーニング法 実験医学別冊 ゲノム編集実験スタンダード 実験医学別冊 ゲノム編集実験スタンダード 2019 Disclose to all
Title language:
External funds: competitive funds and Grants-in-Aid for Scientific Research (Kakenhi)
Type Position Title(Japanese) Title(English) Period
国際共同研究加速基金(帰国発展研究) Representative CRISPRスクリーニングを用いたヒトiPS細胞の内胚葉系分化機構の解明 (平成30年度分) 2018/04/01-2019/03/31
国際共同研究加速基金(帰国発展研究) Representative CRISPRスクリーニングを用いたヒトiPS細胞の内胚葉系分化機構の解明 (2019年度分) 2019/04/01-2020/03/31
国際共同研究加速基金 (帰国発展研究) Representative CRISPRスクリーニングを用いたヒトiPS細胞の内胚葉系分化機構の解明 (2020年度分) 2020/04/01-2021/03/31
基盤研究A Representative in vivo CRISPRスクリーニングの技術確立と生体内細胞増殖機構の解明 (令和3年度分) 2021/04/05-2022/03/31
External funds: other than those above
System Main person Title(Japanese) Title(English) Period
群馬大学生体調節研究所「内分秘・代謝学共同研究拠点」 遊佐宏介 脂肪分化を制御する代謝エピゲノム因子のCRISPRスクリーニング 2021/04/01-2022/03/31
東京大学医科学研究所国内共同研究 遊佐宏介 完全無細 AAV ベクター合成技術 発 2021/04/01-2022/03/31
Teaching subject(s)
Name(Japanese) Name(English) Term Department Period
分子遺伝学II Molecular Genetics II 前期 理学部 2019/04-2020/03
ILASセミナー:発生再生ゼミナール ILAS Seminar :Seminar on Developmental Biology and Regenerative Medicine 前期 全学共通科目 2020/04-2021/03
分子遺伝学II Molecular Genetics II 前期 理学部 2020/04-2021/03
分子遺伝学II Molecular Genetics II 前期 理学部 2021/04-2022/03
Faculty management (title, position)
Title Period
人権委員会 委員 2019/04/01-
再生医科学動物実験専門委員会 委員 2018/10/01-
化学物質管理委員会 2018/10/01-2020/03/31
医の倫理委員会 2020/04/-
医学研究科運営委員会 2019/10/01-2021/09/30
医学図書館運営委員会 2021/04/01-2023/03/31
医学研究科論文調査委員会 委員 2019/08/-2020/01/
学研究科論文調査委員会 委員長 2020/02/-2020/07/
医学研究科大学院入試委員会 委員 2019/04/-2022/03/