山田 真太郎

Last Update: 2021/06/08 12:09:40

Print

Name(Kanji/Kana/Abecedarium Latinum)
山田 真太郎/ヤマダ シンタロウ/Yamada, Shintaro
Primary Affiliation(Org1/Job title)
Graduate Schools Medicine/Assistant Professor
Faculty
Org1 Job title
医学部
Academic Degree
Field(Japanese) Field(English) University(Japanese) University(English) Method
修士(理学) 東京大学
博士(理学) 東京大学
ORCID ID
https://orcid.org/0000-0002-4882-0871
researchmap URL
https://researchmap.jp/7000025208
Research Topics
(Japanese)
DNA二重鎖切断修復機構の解明
(English)
Understanding molecular mechanisms in DNA double-strand break repair
Overview of the research
(Japanese)
放射線などの環境要因や内的要因から自然発生するゲノム切断の多くは切断端が化学修飾された「汚い」切断であり、発がん性の強いDNA損傷である。この「汚い」ゲノム切断の修復はまず切断端を「きれい」(3′末端に水酸基、5′末端にリン酸基が付いた状態)にする必要があるが、分子機構の多くが不明である。山田はこの「汚い」切断を「きれい」な切断にする過程を高解像度で測定するバイオアッセイ系を開発している。
(English)
Radiation and other naturally occurring exogenous and endogenous DNA damage often generate genomic DNA breaks with chemically modified “dirty” ends, and are highly carcinogenic. DNA repair must start by cleaning “dirty” ends (modifying them into a 3′-OH dNMP and a 5′-P dNMP), but much remains unknown about its molecular mechanism. Yamada wants to understand this process and tries to develop a high-resolution bioassay system to monitor how cells make such “dirty” ends “clean” ends.
Fields of research (key words)
Key words(Japanese) Key words(English)
放射線影響 Radiation influence
化学物質影響 Chemical substance influence
分子生物学 Molecular biology
ゲノム生物学 Genome biology
Published Papers
Author Author(Japanese) Author(English) Title Title(Japanese) Title(English) Bibliography Bibliography(Japanese) Bibliography(English) Publication date Refereed paper Language Publishing type Disclose
Hiroyuki Sasanuma, Shintaro Yamada, Masataka Tsuda, Shunichi Takeda Hiroyuki Sasanuma, Shintaro Yamada, Masataka Tsuda, Shunichi Takeda Hiroyuki Sasanuma, Shintaro Yamada, Masataka Tsuda, Shunichi Takeda Restoration of ligatable "clean" double-strand break ends is the rate-limiting step in the rejoining of ionizing-radiation-induced DNA breakage. Restoration of ligatable "clean" double-strand break ends is the rate-limiting step in the rejoining of ionizing-radiation-induced DNA breakage. Restoration of ligatable "clean" double-strand break ends is the rate-limiting step in the rejoining of ionizing-radiation-induced DNA breakage. DNA repair, 93, 102913-102913 DNA repair, 93, 102913-102913 DNA repair, 93, 102913-102913 2020/09 English Research paper(scientific journal) Disclose to all
Takatomi Yamada, Shintaro Yamada, Da-Qiao Ding, Yurika Fujita, Emi Takaya, Yasushi Hiraoka, Hiroshi Murakami, Kunihiro Ohta Takatomi Yamada, Shintaro Yamada, Da-Qiao Ding, Yurika Fujita, Emi Takaya, Yasushi Hiraoka, Hiroshi Murakami, Kunihiro Ohta Takatomi Yamada, Shintaro Yamada, Da-Qiao Ding, Yurika Fujita, Emi Takaya, Yasushi Hiraoka, Hiroshi Murakami, Kunihiro Ohta Maintenance of meiotic crossover against reduced double-strand break formation in fission yeast lacking histone H2A.Z. Maintenance of meiotic crossover against reduced double-strand break formation in fission yeast lacking histone H2A.Z. Maintenance of meiotic crossover against reduced double-strand break formation in fission yeast lacking histone H2A.Z. Gene, 743, 144615-144615 Gene, 743, 144615-144615 Gene, 743, 144615-144615 2020/06/15 Refereed English Research paper(scientific journal) Disclose to all
Shintaro Yamada, Anjali Gupta Hinch, Hisashi Kamido, Yongwei Zhang, Winfried Edelmann, Scott Keeney Shintaro Yamada, Anjali Gupta Hinch, Hisashi Kamido, Yongwei Zhang, Winfried Edelmann, Scott Keeney Shintaro Yamada, Anjali Gupta Hinch, Hisashi Kamido, Yongwei Zhang, Winfried Edelmann, Scott Keeney Molecular structures and mechanisms of DNA break processing in mouse meiosis. Molecular structures and mechanisms of DNA break processing in mouse meiosis. Molecular structures and mechanisms of DNA break processing in mouse meiosis. Genes & development, 34, 11-12, 806-818 Genes & development, 34, 11-12, 806-818 Genes & development, 34, 11-12, 806-818 2020/06/01 Refereed English Research paper(scientific journal) Disclose to all
Remi Akagawa, Hai Thanh Trinh, Liton Kumar Saha, Masataka Tsuda, Kouji Hirota, Shintaro Yamada, Atsushi Shibata, Masato T Kanemaki, Shinichiro Nakada, Shunichi Takeda, Hiroyuki Sasanuma Remi Akagawa, Hai Thanh Trinh, Liton Kumar Saha, Masataka Tsuda, Kouji Hirota, Shintaro Yamada, Atsushi Shibata, Masato T Kanemaki, Shinichiro Nakada, Shunichi Takeda, Hiroyuki Sasanuma Remi Akagawa, Hai Thanh Trinh, Liton Kumar Saha, Masataka Tsuda, Kouji Hirota, Shintaro Yamada, Atsushi Shibata, Masato T Kanemaki, Shinichiro Nakada, Shunichi Takeda, Hiroyuki Sasanuma UBC13-Mediated Ubiquitin Signaling Promotes Removal of Blocking Adducts from DNA Double-Strand Breaks. UBC13-Mediated Ubiquitin Signaling Promotes Removal of Blocking Adducts from DNA Double-Strand Breaks. UBC13-Mediated Ubiquitin Signaling Promotes Removal of Blocking Adducts from DNA Double-Strand Breaks. iScience, 23, 4, 101027-101027 iScience, 23, 4, 101027-101027 iScience, 23, 4, 101027-101027 2020/03/31 Refereed English Research paper(scientific journal) Disclose to all
Jacob Paiano, Wei Wu, Shintaro Yamada, Nicholas Sciascia, Elsa Callen, Ana Paola Cotrim, Rajashree A Deshpande, Yaakov Maman, Amanda Day, Tanya T Paull, André Nussenzweig Jacob Paiano, Wei Wu, Shintaro Yamada, Nicholas Sciascia, Elsa Callen, Ana Paola Cotrim, Rajashree A Deshpande, Yaakov Maman, Amanda Day, Tanya T Paull, André Nussenzweig Jacob Paiano, Wei Wu, Shintaro Yamada, Nicholas Sciascia, Elsa Callen, Ana Paola Cotrim, Rajashree A Deshpande, Yaakov Maman, Amanda Day, Tanya T Paull, André Nussenzweig ATM and PRDM9 regulate SPO11-bound recombination intermediates during meiosis. ATM and PRDM9 regulate SPO11-bound recombination intermediates during meiosis. ATM and PRDM9 regulate SPO11-bound recombination intermediates during meiosis. Nature communications, 11, 1, 857-857 Nature communications, 11, 1, 857-857 Nature communications, 11, 1, 857-857 2020/02/12 Refereed English Research paper(scientific journal) Disclose to all
Hiroyuki Sasanuma, Masataka Tsuda, Suguru Morimoto, Liton Kumar Saha, Md Maminur Rahman, Yusuke Kiyooka, Haruna Fujiike, Andrew D Cherniack, Junji Itou, Elsa Callen Moreu, Masakazu Toi, Shinichiro Nakada, Hisashi Tanaka, Ken Tsutsui, Shintaro Yamada, Andre Nussenzweig, Shunichi Takeda Hiroyuki Sasanuma, Masataka Tsuda, Suguru Morimoto, Liton Kumar Saha, Md Maminur Rahman, Yusuke Kiyooka, Haruna Fujiike, Andrew D Cherniack, Junji Itou, Elsa Callen Moreu, Masakazu Toi, Shinichiro Nakada, Hisashi Tanaka, Ken Tsutsui, Shintaro Yamada, Andre Nussenzweig, Shunichi Takeda Hiroyuki Sasanuma, Masataka Tsuda, Suguru Morimoto, Liton Kumar Saha, Md Maminur Rahman, Yusuke Kiyooka, Haruna Fujiike, Andrew D Cherniack, Junji Itou, Elsa Callen Moreu, Masakazu Toi, Shinichiro Nakada, Hisashi Tanaka, Ken Tsutsui, Shintaro Yamada, Andre Nussenzweig, Shunichi Takeda BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II-DNA complexes. BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II-DNA complexes. BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II-DNA complexes. Proceedings of the National Academy of Sciences of the United States of America, 115, 45, E10642-E10651-E10651 Proceedings of the National Academy of Sciences of the United States of America, 115, 45, E10642-E10651-E10651 Proceedings of the National Academy of Sciences of the United States of America, 115, 45, E10642-E10651-E10651 2018/11/06 Refereed English Research paper(scientific journal) Disclose to all
Shintaro Yamada, Kazuto Kugou, Da-Qiao Ding, Yurika Fujita, Yasushi Hiraoka, Hiroshi Murakami, Kunihiro Ohta, Takatomi Yamada Shintaro Yamada, Kazuto Kugou, Da-Qiao Ding, Yurika Fujita, Yasushi Hiraoka, Hiroshi Murakami, Kunihiro Ohta, Takatomi Yamada Shintaro Yamada, Kazuto Kugou, Da-Qiao Ding, Yurika Fujita, Yasushi Hiraoka, Hiroshi Murakami, Kunihiro Ohta, Takatomi Yamada The conserved histone variant H2A.Z illuminates meiotic recombination initiation. The conserved histone variant H2A.Z illuminates meiotic recombination initiation. The conserved histone variant H2A.Z illuminates meiotic recombination initiation. Current genetics, 64, 5, 1015-1019 Current genetics, 64, 5, 1015-1019 Current genetics, 64, 5, 1015-1019 2018/10 Refereed English Research paper(scientific journal) Disclose to all
Shintaro Yamada, Kazuto Kugou, Da-Qiao Ding, Yurika Fujita, Yasushi Hiraoka, Hiroshi Murakami, Kunihiro Ohta, Takatomi Yamada Shintaro Yamada, Kazuto Kugou, Da-Qiao Ding, Yurika Fujita, Yasushi Hiraoka, Hiroshi Murakami, Kunihiro Ohta, Takatomi Yamada Shintaro Yamada, Kazuto Kugou, Da-Qiao Ding, Yurika Fujita, Yasushi Hiraoka, Hiroshi Murakami, Kunihiro Ohta, Takatomi Yamada The histone variant H2A.Z promotes initiation of meiotic recombination in fission yeast. The histone variant H2A.Z promotes initiation of meiotic recombination in fission yeast. The histone variant H2A.Z promotes initiation of meiotic recombination in fission yeast. Nucleic acids research, 46, 2, 609-620 Nucleic acids research, 46, 2, 609-620 Nucleic acids research, 46, 2, 609-620 2018/01/25 Refereed English Research paper(scientific journal) Disclose to all
Shintaro Yamada, Seoyoung Kim, Sam E Tischfield, Maria Jasin, Julian Lange, Scott Keeney Shintaro Yamada, Seoyoung Kim, Sam E Tischfield, Maria Jasin, Julian Lange, Scott Keeney Shintaro Yamada, Seoyoung Kim, Sam E Tischfield, Maria Jasin, Julian Lange, Scott Keeney Genomic and chromatin features shaping meiotic double-strand break formation and repair in mice. Genomic and chromatin features shaping meiotic double-strand break formation and repair in mice. Genomic and chromatin features shaping meiotic double-strand break formation and repair in mice. Cell cycle (Georgetown, Tex.), 16, 20, 1870-1884 Cell cycle (Georgetown, Tex.), 16, 20, 1870-1884 Cell cycle (Georgetown, Tex.), 16, 20, 1870-1884 2017/10/18 Refereed English Research paper(scientific journal) Disclose to all
Shintaro Yamada, Mika Okamura, Arisa Oda, Hiroshi Murakami, Kunihiro Ohta, Takatomi Yamada Shintaro Yamada, Mika Okamura, Arisa Oda, Hiroshi Murakami, Kunihiro Ohta, Takatomi Yamada Shintaro Yamada, Mika Okamura, Arisa Oda, Hiroshi Murakami, Kunihiro Ohta, Takatomi Yamada Correlation of Meiotic DSB Formation and Transcription Initiation Around Fission Yeast Recombination Hotspots. Correlation of Meiotic DSB Formation and Transcription Initiation Around Fission Yeast Recombination Hotspots. Correlation of Meiotic DSB Formation and Transcription Initiation Around Fission Yeast Recombination Hotspots. Genetics, 206, 2, 801-809 Genetics, 206, 2, 801-809 Genetics, 206, 2, 801-809 2017/06 Refereed English Research paper(scientific journal) Disclose to all
Eleni P Mimitou, Shintaro Yamada, Scott Keeney Eleni P Mimitou, Shintaro Yamada, Scott Keeney Eleni P Mimitou, Shintaro Yamada, Scott Keeney A global view of meiotic double-strand break end resection. A global view of meiotic double-strand break end resection. A global view of meiotic double-strand break end resection. Science (New York, N.Y.), 355, 6320, 40-45 Science (New York, N.Y.), 355, 6320, 40-45 Science (New York, N.Y.), 355, 6320, 40-45 2017/01/06 Refereed English Research paper(scientific journal) Disclose to all
Julian Lange, Shintaro Yamada, Sam E Tischfield, Jing Pan, Seoyoung Kim, Xuan Zhu, Nicholas D Socci, Maria Jasin, Scott Keeney Julian Lange, Shintaro Yamada, Sam E Tischfield, Jing Pan, Seoyoung Kim, Xuan Zhu, Nicholas D Socci, Maria Jasin, Scott Keeney Julian Lange, Shintaro Yamada, Sam E Tischfield, Jing Pan, Seoyoung Kim, Xuan Zhu, Nicholas D Socci, Maria Jasin, Scott Keeney The Landscape of Mouse Meiotic Double-Strand Break Formation, Processing, and Repair. The Landscape of Mouse Meiotic Double-Strand Break Formation, Processing, and Repair. The Landscape of Mouse Meiotic Double-Strand Break Formation, Processing, and Repair. Cell, 167, 3, 695-708 Cell, 167, 3, 695-708 Cell, 167, 3, 695-708 2016/10/20 Refereed English Research paper(scientific journal) Disclose to all
Shintaro Yamada, Kunihiro Ohta, Takatomi Yamada Shintaro Yamada, Kunihiro Ohta, Takatomi Yamada Shintaro Yamada, Kunihiro Ohta, Takatomi Yamada Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast. Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast. Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast. Nucleic acids research, 41, 6, 3504-17 Nucleic acids research, 41, 6, 3504-17 Nucleic acids research, 41, 6, 3504-17 2013/04/01 Refereed English Research paper(scientific journal) Disclose to all
Tomoichiro Miyoshi, Masaru Ito, Kazuto Kugou, Shintaro Yamada, Masaki Furuichi, Arisa Oda, Takatomi Yamada, Kouji Hirota, Hisao Masai, Kunihiro Ohta Tomoichiro Miyoshi, Masaru Ito, Kazuto Kugou, Shintaro Yamada, Masaki Furuichi, Arisa Oda, Takatomi Yamada, Kouji Hirota, Hisao Masai, Kunihiro Ohta Tomoichiro Miyoshi, Masaru Ito, Kazuto Kugou, Shintaro Yamada, Masaki Furuichi, Arisa Oda, Takatomi Yamada, Kouji Hirota, Hisao Masai, Kunihiro Ohta A central coupler for recombination initiation linking chromosome architecture to S phase checkpoint. A central coupler for recombination initiation linking chromosome architecture to S phase checkpoint. A central coupler for recombination initiation linking chromosome architecture to S phase checkpoint. Molecular cell, 47, 5, 722-33 Molecular cell, 47, 5, 722-33 Molecular cell, 47, 5, 722-33 2012/09/14 Refereed English Research paper(scientific journal) Disclose to all
Tomohiko Morita, Takatomi Yamada, Shintaro Yamada, Kouji Matsumoto, Kunihiro Ohta Tomohiko Morita, Takatomi Yamada, Shintaro Yamada, Kouji Matsumoto, Kunihiro Ohta Tomohiko Morita, Takatomi Yamada, Shintaro Yamada, Kouji Matsumoto, Kunihiro Ohta Fission yeast ATF/CREB family protein Atf21 plays important roles in production of normal spores. Fission yeast ATF/CREB family protein Atf21 plays important roles in production of normal spores. Fission yeast ATF/CREB family protein Atf21 plays important roles in production of normal spores. Genes to cells : devoted to molecular & cellular mechanisms, 16, 2, 217-30 Genes to cells : devoted to molecular & cellular mechanisms, 16, 2, 217-30 Genes to cells : devoted to molecular & cellular mechanisms, 16, 2, 217-30 2011/02 Refereed English Research paper(scientific journal) Disclose to all
Kazuto Kugou, Tomoyuki Fukuda, Shintaro Yamada, Masaru Ito, Hiroyuki Sasanuma, Saori Mori, Yuki Katou, Takehiko Itoh, Kouji Matsumoto, Takehiko Shibata, Katsuhiko Shirahige, Kunihiro Ohta Kazuto Kugou, Tomoyuki Fukuda, Shintaro Yamada, Masaru Ito, Hiroyuki Sasanuma, Saori Mori, Yuki Katou, Takehiko Itoh, Kouji Matsumoto, Takehiko Shibata, Katsuhiko Shirahige, Kunihiro Ohta Kazuto Kugou, Tomoyuki Fukuda, Shintaro Yamada, Masaru Ito, Hiroyuki Sasanuma, Saori Mori, Yuki Katou, Takehiko Itoh, Kouji Matsumoto, Takehiko Shibata, Katsuhiko Shirahige, Kunihiro Ohta Rec8 guides canonical Spo11 distribution along yeast meiotic chromosomes. Rec8 guides canonical Spo11 distribution along yeast meiotic chromosomes. Rec8 guides canonical Spo11 distribution along yeast meiotic chromosomes. Molecular biology of the cell, 20, 13, 3064-76 Molecular biology of the cell, 20, 13, 3064-76 Molecular biology of the cell, 20, 13, 3064-76 2009/07 Refereed English Research paper(scientific journal) Disclose to all

  • <<
  • >>
Title language:
Misc
Author Author(Japanese) Author(English) Title Title(Japanese) Title(English) Bibliography Bibliography(Japanese) Bibliography(English) Publication date Refereed paper Language Publishing type Disclose
Kazuto Kugou, Masaru Ito, Tomoyuki Fukuda, Shintaro Yamada, Takehiko Shibata, Katsuhiko Shirahige, Kunihiro Ohta Kazuto Kugou, Masaru Ito, Tomoyuki Fukuda, Shintaro Yamada, Takehiko Shibata, Katsuhiko Shirahige, Kunihiro Ohta Kazuto Kugou, Masaru Ito, Tomoyuki Fukuda, Shintaro Yamada, Takehiko Shibata, Katsuhiko Shirahige, Kunihiro Ohta Relationship between meiotic cohesin component Rec8 and DSB proteins Relationship between meiotic cohesin component Rec8 and DSB proteins Relationship between meiotic cohesin component Rec8 and DSB proteins GENES & GENETIC SYSTEMS, 85, 6, 416-416 GENES & GENETIC SYSTEMS, 85, 6, 416-416 GENES & GENETIC SYSTEMS, 85, 6, 416-416 2010/12 English Research paper, summary (international conference) Disclose to all
Title language:
Conference Activities & Talks
Title Title(Japanese) Title(English) Conference Conference(Japanese) Conference(English) Promotor Promotor(Japanese) Promotor(English) Date Language Assortment Disclose
Genome-wide identification of androgen-responsive enhancers and analysis of TOP2 function in enhancers[Invited] アンドロゲン応答性エンハンサーの全ゲノムでの同定と、エンハンサーにおけるTOP2の機能解析 [Invited] Genome-wide identification of androgen-responsive enhancers and analysis of TOP2 function in enhancers [Invited] TOPO 2021 TOPO 2021 2021/05/28 English Oral presentation(invited, special) Disclose to all
DNA Break and Repair in Meiosis[Invited] 減数分裂期のDNA切断と修復 [Invited] DNA Break and Repair in Meiosis [Invited] 第43回日本分子生物学会年会 第43回日本分子生物学会年会 2020/12/04 English Oral presentation(invited, special) Disclose to all
Mouse meiotic double-strand breaks are underrepresented but nonetheless occur frequently within repeated sequences[Invited] マウスの減数分裂期のDNA二重鎖切断は反復配列で起こりにくいものの、それでも頻繁に起こっている [Invited] Mouse meiotic double-strand breaks are underrepresented but nonetheless occur frequently within repeated sequences [Invited] The 2017 NYU Repetitive DNA Symposium NYU 反復配列シンポジウム 2017 The 2017 NYU Repetitive DNA Symposium 2017/10/27 English Symposium workshop panel(public) Disclose to all
Title language:
Awards
Title(Japanese) Title(English) Organization name(Japanese) Organization name(English) Date
東京大学理学部学生選抜国際派遣プログラム The University of Tokyo Faculty of Science, Elite Science Student Visit Abroad Program 東京大学理学部 The University of Tokyo Faculty of Science 2008/03/31
東京大学理学部生物情報科学学部教育特別プログラム The University of Tokyo Faculty of Science, Undergraduate Program for Bioinformatics and Systems Biology 東京大学理学部 The University of Tokyo Faculty of Science 2007/03/31
日本学術振興会特別研究員DC1 Research Fellowship for Young Scientists from the Japan Society for the Promotion of Science 日本学術振興会 the Japan Society for the Promotion of Science 2010/04/01
村瀬九郎医師JMSA奨学金 Kuro Murase MD-JMSA Scholarship 米国日本人医師会 Japanese Medical Society of America 2015/05/09
第10回3Rシンポジウムベストポスター賞 The 10th 3R Symposium Best Poster Award 第10回3Rシンポジウム The 10th 3R Symposium 2016/11/16
External funds: competitive funds and Grants-in-Aid for Scientific Research (Kakenhi)
Type Position Title(Japanese) Title(English) Period
若手研究 Representative 放射線等で生じる、異常な付加体が付くゲノム切断端から付加体を除去する機序の解明 (2019年度分) 2019/04/01-2020/03/31
若手研究 Representative 放射線等で生じる、異常な付加体が付くゲノム切断端から付加体を除去する機序の解明 (2020年度分) 2020/04/01-2021/03/31