中安 淳

Last Update: 2019/06/03 12:59:07

Print

Name(Kanji/Kana/Abecedarium Latinum)
中安 淳/ナカヤス アツシ/Nakayasu, Atsushi
Primary Affiliation(Org1/Job title)
Center for the Promotion of Interdisciplinary Education and Research (C-PiER)/Program-Specific Assistant Professor
Academic Degree
Field(Japanese) Field(English) University(Japanese) University(English) Method
修士(数理科学) 東京大学
博士(数理科学) 東京大学
ORCID ID
https://orcid.org/0000-0002-2008-7321
researchmap URL
https://researchmap.jp/ankys
Published Papers
Author Author(Japanese) Author(English) Title Title(Japanese) Title(English) Bibliography Bibliography(Japanese) Bibliography(English) Publication date Refereed paper Language Publishing type Disclose
Atsushi Nakayasu Atsushi Nakayasu Atsushi Nakayasu Two approaches to minimax formula of the additive eigenvalue for quasiconvex Hamiltonians Two approaches to minimax formula of the additive eigenvalue for quasiconvex Hamiltonians Two approaches to minimax formula of the additive eigenvalue for quasiconvex Hamiltonians Proc. Amer. Math. Soc., 147, 2, 701-710 Proc. Amer. Math. Soc., 147, 2, 701-710 Proc. Amer. Math. Soc., 147, 2, 701-710 2019/02 Refereed English Research paper(scientific journal) Disclose to all
Qing Liu, Atsushi Nakayasu Qing Liu, Atsushi Nakayasu Qing Liu, Atsushi Nakayasu Convexity preserving properties for Hamilton-Jacobi equations in geodesic spaces Convexity preserving properties for Hamilton-Jacobi equations in geodesic spaces Convexity preserving properties for Hamilton-Jacobi equations in geodesic spaces Discrete Contin. Dyn. Syst., 39, 1, 157-183 Discrete Contin. Dyn. Syst., 39, 1, 157-183 Discrete Contin. Dyn. Syst., 39, 1, 157-183 2019/01 Refereed English Research paper(scientific journal) Disclose to all
Atsushi Nakayasu, Tokinaga Namba Atsushi Nakayasu, Tokinaga Namba Atsushi Nakayasu, Tokinaga Namba Stability properties and large time behavior of viscosity solutions of Hamilton-Jacobi equations on metric spaces Stability properties and large time behavior of viscosity solutions of Hamilton-Jacobi equations on metric spaces Stability properties and large time behavior of viscosity solutions of Hamilton-Jacobi equations on metric spaces Nonlinearity, 31, 11, 5147-5161 Nonlinearity, 31, 11, 5147-5161 Nonlinearity, 31, 11, 5147-5161 2018/10 Refereed English Research paper(scientific journal) Disclose to all
Atsushi Nakayasu, Piotr Rybka Atsushi Nakayasu, Piotr Rybka Atsushi Nakayasu, Piotr Rybka Integrability of the derivative of solutions to a singular one-dimensional parabolic problem Integrability of the derivative of solutions to a singular one-dimensional parabolic problem Integrability of the derivative of solutions to a singular one-dimensional parabolic problem Topol. Methods Nonlinear Anal., 52, 1, 239-257 Topol. Methods Nonlinear Anal., 52, 1, 239-257 Topol. Methods Nonlinear Anal., 52, 1, 239-257 2018/09 Refereed English Research paper(scientific journal) Disclose to all
蕭冬遠、張龍傑、中安淳、若林泰央 蕭冬遠、張龍傑、中安淳、若林泰央 蕭冬遠、張龍傑、中安淳、若林泰央 協同組合の数理解析 協同組合の数理解析 協同組合の数理解析 数理科学実践研究レター 数理科学実践研究レター 数理科学実践研究レター 2018/07 Refereed Research paper(scientific journal) Disclose to all
Atsushi Nakayasu, Piotr Rybka Atsushi Nakayasu, Piotr Rybka Atsushi Nakayasu, Piotr Rybka Energy solutions to one-dimensional singular parabolic problems with BV data are viscosity solutions Energy solutions to one-dimensional singular parabolic problems with BV data are viscosity solutions Energy solutions to one-dimensional singular parabolic problems with BV data are viscosity solutions Mathematics for Nonlinear Phenomena - Analysis and Computation, 195-213 Mathematics for Nonlinear Phenomena - Analysis and Computation, 195-213 Mathematics for Nonlinear Phenomena - Analysis and Computation, 195-213 2017/11 Refereed English Research paper(international conference proceedings) Disclose to all
Nao Hamamuki, Atsushi Nakayasu, Tokinaga Namba Nao Hamamuki, Atsushi Nakayasu, Tokinaga Namba Nao Hamamuki, Atsushi Nakayasu, Tokinaga Namba On cell problems for Hamilton-Jacobi equations with non-coercive Hamiltonians and their application to homogenization problems On cell problems for Hamilton-Jacobi equations with non-coercive Hamiltonians and their application to homogenization problems On cell problems for Hamilton-Jacobi equations with non-coercive Hamiltonians and their application to homogenization problems J. Differential Equations, 259, 11, 6672-6693 J. Differential Equations, 259, 11, 6672-6693 J. Differential Equations, 259, 11, 6672-6693 2015/12 Refereed English Research paper(scientific journal) Disclose to all
Yoshikazu Giga, Nao Hamamuki, Atsushi Nakayasu Yoshikazu Giga, Nao Hamamuki, Atsushi Nakayasu Yoshikazu Giga, Nao Hamamuki, Atsushi Nakayasu Eikonal equations in metric spaces Eikonal equations in metric spaces Eikonal equations in metric spaces Trans. Amer. Math. Soc., 367, 1, 49-66 Trans. Amer. Math. Soc., 367, 1, 49-66 Trans. Amer. Math. Soc., 367, 1, 49-66 2015 Refereed English Research paper(scientific journal) Disclose to all
Atsushi Nakayasu Atsushi Nakayasu Atsushi Nakayasu Metric viscosity solutions for Hamilton-Jacobi equations of evolution type Metric viscosity solutions for Hamilton-Jacobi equations of evolution type Metric viscosity solutions for Hamilton-Jacobi equations of evolution type Adv. Math. Sci. Appl., 24, 2, 333-351 Adv. Math. Sci. Appl., 24, 2, 333-351 Adv. Math. Sci. Appl., 24, 2, 333-351 2014 Refereed English Research paper(scientific journal) Disclose to all
Mi-Ho Giga, Yoshikazu Giga, Atsushi Nakayasu Mi-Ho Giga, Yoshikazu Giga, Atsushi Nakayasu Mi-Ho Giga, Yoshikazu Giga, Atsushi Nakayasu On general existence results for one-dimensional singular diffusion equations with spatially inhomogeneous driving force On general existence results for one-dimensional singular diffusion equations with spatially inhomogeneous driving force On general existence results for one-dimensional singular diffusion equations with spatially inhomogeneous driving force Geometric Partial Differential Equations proceedings, 145-170 Geometric Partial Differential Equations proceedings, 145-170 Geometric Partial Differential Equations proceedings, 145-170 2013 Refereed English Research paper(international conference proceedings) Disclose to all
Title language: